A numerical modeling study of the propagation of idealized sea-breeze density currents

F.J. Robinson
Department of Geology and Geophysics, Yale University, CT, USA

M.D. Patterson
Department of Architecture and Civil Engineering, University of Bath, UK

S.C. Sherwood
Climate Change Research Centre, University of New South Wales, Sydney, Australia

Corresponding author address:
F. J. Robinson, Department of Geology and Geophysics, Kline Geology Laboratory, P.O. Box 208109, Yale University, New Haven, CT 06520-8109 (frank.robinson@yale.edu)
Sea breezes are often modeled as a wave response to transient heating in a stratified environment. They occur however as density currents with well-defined fronts, the understanding of which rests primarily on experiments and theory that do not include the stratification within and above the current and the steady heat input at the land surface. These gaps are investigated here via a sequence of idealized 2-D density current simulations, progressing from the simplest classical case to more realistic surface heating and stratification.

In the classical situation where the entire horizontal density contrast is imposed initially, the front quickly attains a constant speed determined by traditional formulae based on the density contrast across the front and the current depth, or by the amount of heat needed to produce it from an initially barotropic fluid. However, these diagnostic and prognostic tools fail completely if the current is driven by a gradual input of heat, analogous to a real sea-breeze situation. In this case the current accelerates slowly at first, remaining much slower than would be expected based on classical formulas.

The motion of a classical density current is mostly inertial, with accelerations occurring at the current head; while in the continuously heated case, the entire current accelerates requiring interior body forces to develop slowly due to heating of the density current itself. This explains why observed sea-breeze fronts propagate more slowly than predicted from classical formulae, and may help to explain why larger land masses, where fronts have more time to accelerate, often experience stronger convective storms when triggered by sea-breeze effects.
1. Introduction

Gravity or density currents are predominantly horizontal flows where gravity drives fluid motion due to density gradients within a fluid. Such currents are ubiquitous in the atmospheric boundary layer (Smith and Reeder 1988). A common example is marine air advancing onto land as a sea breeze, which is initiated by differential solar heating of land and water surfaces (well known examples include the Fremantle and Cape Doctors in Perth and Cape Town, respectively; Gentilli 1969). There have been numerous observational and numerical studies of sea breezes (Crossman and Horel 2010; Miller et al. 2003, and references therein), and high resolution 3D large eddy simulations (LES) that fully resolved boundary layer dynamical scales (e.g. (Cunningham 2007; Fovel and Dailey 2001)), though studies, such as (Robinson et al. 2011, hereafter RSG11) and Wu et al. (2009), have shown that 2D simulations can replicate important characteristics of observations.

As well as transporting cool marine air onshore, sea breezes can trigger cumulus cloud formation along the front of the advancing current. Deep convection observed over the Florida peninsula (Kingsmill 1995) and the Tiwi islands (Chemel et al. 2009) occurs when either sea-breeze fronts (SBF) from opposite coastlines collide or SBFs collide with gust fronts somewhere over the land surface (Carbone et al. 2000). It has been suggested that this is due to a strong localized uplift caused by the displacement of fluid by the propagating sea breeze (Fovel 2005). The timing and location of deep convection triggered in this manner, both onshore and offshore, would then be controlled by the propagation speed of sea breeze currents (e.g. Moncrieff and Liu 1999). A full understanding of the dynamics of density currents/sea breezes would therefore seem to be important for predicting the timing and severity of deep convective events; for example, cumulus parameterizations in GCMs are beginning to explicitly include cold-pool lifting effects, though with relatively little attention to their dynamics (Grandpeix and Lafore 2009).

An interesting aspect of sea breeze dynamics is the sensitivity of sea breeze convergence and subsequent ascent velocity to island width (Savijarvi and Matthews 2004).
width (for strongest ascent) is not well defined and appears to depend on the type of heating, background stratification, and possibly other factors. Studies reported optimal scales ranging from 30-50km (Abe and Yoshida 1982) to 100-150km (Mahrer and Segal 1984; Xian and Pielke 1991). More recently, Robinson et al. (2008) (hereafter RSL08) argued that deep convection in the atmosphere is particularly strong when the atmosphere is heated at the appropriate time and spatial scales to excite a ‘resonance’ with respect to the propagation of internal gravity waves. Under these conditions the atmosphere has an equivalent depth set by the thickness of the near-neutral daytime boundary layer (about 1-2 km) and stratification of the morning sounding. They found that this mechanism could also explain the notoriously strong convection over the Tiwi islands. Their theory essentially ignores density currents or any other form of horizontal advection, though density currents occurred in their simulations. The linear sea breeze model employed by Rotunno (1983), which also ignores density currents per se, is very similar to the one used by RSL08 to explain deep-convective intensity. Subsequent work by RSG11 found that that mesoscale dynamics driven by surface heterogeneity could explain the observed enhancement of convective strength over continents compared to oceans. While this study rejected common alternative hypotheses that the continental intensification was due to differences in humidity, boundary-layer thickness or aerosols, it did not further test the wave-dynamical mechanism proposed earlier. Given the apparent importance of density currents—which are highly nonlinear and are not fundamentally waves—it seems rather surprising that linear models have succeeded in simulating aspects of the sea breeze.

This enigma motivates a deeper understanding of the dynamics of density currents, in particular whether they might have wave-like characteristics or somehow mimic (even if fortuitously) the behavior of gravity waves. In particular, the potential roles of environmental stratification and continuous solar forcing of the surface, which are crucial to wave theories, have not been carefully examined in studies of density currents. Indeed, previous observational and numerical simulation studies of sea-breeze and other density currents have typically compared the behavior to that of very simple laboratory analogs not considering either of
these two effects, and have often found discrepancies (Crossman and Horel 2010).

The most well studied theoretical and laboratory analogs for density current flows are the lock release and lock exchange. Dimensional reasoning and basic integral models have been used to predict the flow speed as a function of the initial conditions (see, for example Hogg et al. 2005; Huppert and Simpson 1980), however, the vast majority of research into density currents is based on the pioneering work of von Kármán (1940), Keulegan (1958) and Benjamin (1968). These models and subsequent developments (Rottman and Simpson 1983; Shin et al. 2004) make the assumptions that the flow is hydrostatic and steady, thus neglecting vertical accelerations. Further to these works on uniform density fluids, the effects of a stratified ambient fluid have been modeled both numerically and in the laboratory (for lock release flows). Maxworthy et al. (2002) observed a complex interaction of current and waves and identified super- and sub-critical flows (where the waves where either trapped at the head of the current or propagated more quickly than the current and escaped periodically).

A stratified sea-breeze will generally propagate into a daytime boundary layer that has already been well-mixed by shallow convection, that is, an unstratified (or weakly-stratified) layer capped by a more strongly stratified one, sometimes with an inversion at this interface (the opposite situation to that examined by Maxworthy et al. (2002)). Haase and Smith (1989) and Liu and Moncrieff (2000) considered the case of a current with a constant stratification flowing into ambients with a range of stratifications, but did not examine the effect of varying the stratification of the current itself. The above studies have ignored two factors that we suggest may be important in the propagation of sea-breezes, namely, stratification and continuous heating of the density current (though note recently, Seigel and van den Heever (2012), did look at the effect of the current stratification on cold-pool propagation.

Once stratification is present, waves become important, and indeed it can become ambiguous whether propagating phenomena are more properly regarded as density currents or waves; Haertel et al. (2001) proposed that the fundamental distinction should be based on the relative importance of vertical vs. horizontal advection of buoyancy, while in Mori and Niino
(2002) the demarcation was stratification. One anticipates that wavelike dynamics will alter the behavior of the density current.

Another complication is that sea breezes on land ride over a surface that is continuously heated by the sun until evening. Many prior dynamical studies have considered only cases where a dense air mass is initiated somehow and there are no further buoyancy sources (Droegemeier and Wilhelmson 1987; Sha and Kawamura 1991). The sea breeze simulations by Xian and Pielke (1991) included a diurnal cycle, but had an unrealistic initial condition that caused a rapid adjustment to steady state and consequently an approximately constant current speed. These idealizations may be reasonable for a thunderstorm outflow if the sky is very cloudy and insolation is weak, but would not apply to a sea-breeze which is driven by solar heating and develops in tandem with continuous heating. Indeed, Carbone et al. (2000) noted that certain sea breeze fronts did not actually look like density currents, having smaller front speeds and Froude numbers than expected for a Benjamin-type density current, noting this as a possible cause.

Midlatitude and subtropical cold fronts resemble density currents near the frontal position, with the front location propagating relative to the background wind field and a low-level, relative flow into the front from the cold side, as found in a classical density current. Such fronts often obey the current speed equation even though the model underlying the equation does not appear applicable in general (Smith and Reeder 1988). Indeed, such systems are complex and are dominated by rotation (i.e., geostrophic), whereas the successful results noted earlier by RSG11 were obtained without rotation (and apply to tropical and subtropical storms). Surface heating has been found in models to significantly affect the behavior of fronts as they come onshore from the ocean (Reeder 1986; Thomsen et al. 2008).

In this study we analyze the ability of idealized density-current theory to explain the behavior of sea breezes developing in the simplest possible realistic situations modeled by RSG11 and found to reproduce observed trends—namely over simple heated islands with no topography or surface roughness, in 2-dimensions, and with no rotation. We focus in
particular on the effects of ongoing surface heating and background stratification. We proceed by considering a progression of situations beginning with simple lock-release cases, adding first stratification, then steady heating, and finally diurnally varying heating.

2. Numerical Simulations

a. Model Description

All of the numerical simulations are done using the using NCAR’s WRF (Weather Research and Forecasting) Model version 3.0. (Skamarock et al. 2008), which solves the fully compressible hydrodynamic (Navier-Stokes) equations (Wicker and Skamarock 2002). It uses a third-order accurate Runge-Kutta scheme for the time integration, and second- to sixth-order accurate spatial discretization is available for the advection terms. The model supports closed periodic or open lateral boundaries, and variable vertical grid spacing. The top boundary is a rigid lid and the bottom free slip. Note, the use of a no-slip boundary condition in 2D can sometimes lead to trapped buoyant fluid at the base. This is because in 2D there is no physical method for this flow to escape, while in 3D it leads to the lobe and cleft instability.

For most of the simulations, the computational domain is 300 km in the horizontal and 25 km in the vertical, with open and rigid boundaries respectively (for 100 km islands, tests were also made on a 500km domain and it was found that the general trends were the same, while for larger islands a 500km domain was always used). To minimize reflection of gravity waves by the upper lid, Rayleigh damping (sponge layer) is applied in the uppermost 5 km, with free-slip upper and lower boundaries. The horizontal and non-uniform vertical grid spacings are 125m and 25-100m respectively (at these resolutions no planetary boundary layer scheme was required). These simulations can be classified as Large Eddy Simulations, and the only parametrization used in the runs is 1.5-TKE closure scheme (Soong and Ogura 1980), which is used to model the subgrid scale motions. Note, as 2D fronts lack some of the energy-dissipating turbulent cascade, their turbulence characteristics are quite different from their 3D counterpart, (Rotunno et al. 2011). However, as the results in this paper do not depend
on turbulence effects, it is not a significant effect in the current study. We initialized the model with a mean temperature sounding from the station at Melville Island (11°33′S, 130°56′E) in Northern Australia, a deep tropical site (see Fig 1. of RSG11), but with water vapor and wind values set to zero.

b. Experiment design

Here we briefly describe the three types of experiments undertaken. These types progress from the simplest possible model in stages of increasing complexity, in order to better understand the dynamics of cold-air outflows and sea breezes.

1) LOCK RELEASE

The first, and simplest simulations are an approximation of the classical dam-break or lock-release laboratory experiments in which a homogeneous cold fluid is released into a warm ambient. The initial potential temperature (θ) profiles offshore and over the land are shown in Fig 1 (for three stratifications). One difference between these numerical configurations and the usual laboratory set-up is that we include an overlying stable stratification (starting at a height of 1.6 km in this case). This is closer to an atmosphere which typically might have a mixed boundary layer capped by strong temperature stratification, rather than an immediate jump to near-zero density at a liquid’s free surface. Fig. 2 shows contours of potential temperature θ and horizontal velocity u in the $x - z$ plane at different times after the release of the cold fluid (purple) into the warm ambient. In this and all subsequent contour plots, the unheated surface between -50km and 0 is ocean and the heated surface between 0 and 50 km is land. As the left and right half of the ocean-island-ocean configuration are mirror images, we only show the left-hand side (i.e. the fronts always merge at 50 km east of the coast).

In this particular case the initial depth of the cold intrusion, D is less than that of the mixed layer H, and it is called a partial-depth lock release. If $H = D$ then it is called a full-depth lock release. The values of H and D are marked on the first panel. The bounding
black rectangle in the first panel marks the original location of the cold intrusion (which in this case is 1.2 K cooler than the warm ambient). Once the lock is released the cold fluid near the ground (purple) moves to the right at an approximately constant speed (see Hopfmuller plots later in paper).

While H and D are specified at the start of the experiments, the current depth h is computed once the density current is in motion and is always defined as the mean height at which the flow velocity u within the density current is zero (level of return flow). h is averaged over 12.5 km (100 grid points) from the current head back into the current and over one hour. The location of level h is shown in the second and third contour plots of u.

2) IMPULSE HEATING

Sea breezes are typically made up of cold, stratified maritime air that penetrates a relatively well-mixed layer of warmer air over the land which forms due to daytime surface heating and shallow convection. The potential temperature over the land approximately matches that of maritime air near the inversion, but is significantly higher near the surface. This situation is seldom considered in idealized and laboratory studies compared to the more common case where a homogeneous cold current penetrates a (possibly stratified) ambient, a setup that might be relevant to gust front outflows but not generally appropriate for sea breezes. Some numerical studies have, however, considered density currents with realistic internal stratification (e.g., Liu and Moncrieff 2000; Seigel and van den Heever 2012).

As a first step toward a more realistic sea breeze front, we initiated “impulse” simulations with a large, instantaneous surface heat input over the central 100km “land” part of the domain. This heat input briefly produces unrealistically high surface temperatures, followed by intense turbulence that quickly creates a daytime mixed layer over the “land.” The temperature profile so created closely resembles that which would result from a gentler and more realistic input of heat from the sun, but by introducing it rapidly compared to the time scale over which a sea breeze can develop, we approximately reproduce the situation common to more idealized
10 studies where all potential energy is established by the (quasi-) initial condition, the current quickly attains a constant speed and the flow is quasi-conservative during the experiment.

Some representative, near-initial θ profiles are shown in Fig 3. The heat input causes a near neutrally-stratified boundary layer (of height H in the figure) to form within about 30 minutes, which is about 10 % of the duration of the sea breeze, thus approximating the initial density contrast of classical lock-release experiments. These runs will be called impulse simulations. The main differences between these and the lock release configuration are the stratification of the cold (offshore) fluid, and the presence of residual turbulence in the warm boundary layer.

3) CONTINUOUS HEATING

The final step in our hierarchy is to examine the implications of the fact that, in nature, heat is put continuously into the system gradually rather than all at once (although the impulse case may be relevant to cold-air outflows from thunderstorms). To examine the changes that result from ongoing heating at the surface, after the current has begun, we ran two sets of simulations with a “top-hat” surface heat flux over the central 100km (or 200km to represent a larger island) of the domain, but a horizontally homogeneous initial state (e.g., sunrise). The initial sounding for these cases is the same as the offshore sounding in the impulse runs with $S = S_o$.

In the first set, termed steady heating, we specified this at a constant heat flux \dot{Q}_o of either 100 or 200 W m$^{-2}$ (maintained for 6 hours), while in the second diurnally heated we set the flux to be $\dot{Q} = \dot{Q}_o \sin(2\pi t/T)$ where \dot{Q}_o is now the maximum flux (either 100, 200 or 400 W m$^{-2}$) and T is 24 hours. (A constant heat flux of 100 W m$^{-2}$ would add 1 MJ m$^{-2}$ of energy every 2 $\frac{3}{4}$ hours.) Fig. 4 shows the accumulated heat for a steady and diurnally heated island both with $\dot{Q}_o = 200$ W m$^{-2}$.

The diurnally forced case is more realistic, but the steadily forced case is easier to analyze. The behavior of the two, described in the next section, is relatively similar to one
another compared to their stark departures from the impulse and lock-release cases.

3. Results

a. Lock-Release

We performed 12 lock-release type experiments with initial horizontal temperature differences, $\Delta \theta$, equal to 0.15 K up to 1.2 K and upper level stratifications (above H) $d\theta/dz$ ranging through four octaves. Key prescribed quantities and results for the full and partial-depth lock release cases are presented in Table 1. Column 1 is the case identifier and column 2 is the ratio of the stratification above H to the control stratification S_0. The next columns in the table are H, D/H, the initial horizontal temperature difference $\Delta \theta = \theta_2 - \theta_1$ (where θ_1 and θ_2 are the initial temperature of the cold intrusion and warm homogeneous layer), the reduced gravity $g' = g\Delta \theta/\theta_2$ and a predicted Froude number,

$$F_{HS} = \frac{1}{2} \sqrt{\frac{D}{H} \left(2 - \frac{D}{H}\right)} \quad (1)$$

which is from equation 5.21 from Shin et al. (2004).

The remaining columns are h/H, the current speed, U and two Benjamin type Froude numbers,

$$F_H = \frac{U}{\sqrt{g' H}} \quad (2)$$

$$F_h = \frac{U}{\sqrt{g' h}} \quad (3)$$

and finally the ratio of U to $\sqrt{Q/10^5}$, where Q is the heat deficit of the cold intrusion,

$$Q = \rho c_p \Delta \theta D$$

and c_p and ρ are the specific heat capacity and density of dry air.

In most cases F_h is close to unity, in approximate agreement with Figure 7 of Benjamin (1968) (with h/H and F_h as the x- and y- axes in the current notation) and Shin et al. (2004) for an infinite ambient), though it increases slightly with upper-layer stratification. In these experiments the release of energy is typically quite abrupt with the flow becoming steady almost immediately after the lock is released. The stratification effects are relatively modest
for the present purposes, but interesting. U reduces from 2.5 m/s to 2.2 m/s as the stratification of upper layer is increased (cases 1-4 in Table 1) (in agreement with Liu and Moncrieff (2000)). This is because as the current travels along it has to push fluid out of its way, and a standing wave between the head of the current and the top of the mixed layer is formed. This can be seen in Fig. 2 as a bump at the inversion directly above the head of the current (at the top of each of the θ figures). This interfacial wave then perturbs the potential temperature surfaces generating gravity wave propagation. For the control case (row 4), the turbulent kinetic energy per unit mass in the gravity waves, $1/2[(u')^2 + (w')^2]$, is about 10% of the current kinetic energy per unit mass, $(1/2)U^2$, (here $u' = u - \langle u \rangle$, where $\langle u \rangle$ is the horizontal average.) This phenomenon will be studied further in a subsequent article.

As these losses of energy are modest, at least in these examples, for a given intrusion depth D the current speed appears to be very well determined by either Benjamin formula (Eq. 2 or 3) or the initial equivalent (negative) heat input per unit domain area, Q, required to create the actual initial condition from a horizontally uniform prototype. For example, when $\Delta \theta$ is increased from 0.15K to 0.6K, U also doubles, so the kinetic energy of the current goes up by a factor of four (e.g. compare cases 10 and 11). The latter result is hardly surprising since the equivalent heat input is proportional to Hg', which is precisely the term in F_H. However, it will be of greater interest in analyzing subsequent cases.

Neither the Benjamin formula F_H nor the initial energy Q fully explain the changes for partial-depth lock experiments (e.g., when D/H becomes smaller than one). In these cases the current does not slow down as much as would be predicted with invariant h/D and F_H (less than +/- 10 % change). The values are however, quite close to those predicted by Ungarish (2009). For example, Fig. 5.11 of Ungarish (2009) presents graphs of equivalent quantities to h/D and $U/\sqrt{g'D}$ that are consistent with Cases 4,7,8,9 in Table 1 (e.g. for $D/H = 1., 1/2, 1/4, 1/8$ we find $h/D = 0.5, 0.5, 0.5, 0.6$ and $U/\sqrt{g'D} = 0.4, 0.5, 0.7$ and 0.8). The Shin et al. (2004) formula, comes close to predicting the observed halving of the Froude Number (though F_{HS} is consistently about 10 % smaller than the measured values of F_H).
This indicates that to understand these partial-depth lock results may require an analysis such as Shin et al. (2004) or Ungarish (2009), rather than simple energy metrics.

b. Impulse heating

We performed 15 “impulse” experiments of 100km wide islands with background stratifications $d\theta/dz$ ranging through four octaves and surface heat inputs Q ranging from 0.5-2.0 MJ m$^{-2}$; experiment parameters and key results are listed in Table 2. For these runs, since we no longer have two initial fluids of constant θ, we estimate H (see Fig. 3) and g' from the transient part of the flow as $g' = g(\theta_{int} - \theta_{cur})/\theta_{int}$, where θ_{int} is the potential temperature of the interior fluid (sampled at the center of the island i.e. at $x=50$ km) averaged vertically over 0 to h, and θ_{cur} is the potential temperature of the current averaged horizontally (over the first 12.5 km behind the current head) and vertically (between 0 and h). Quantities g', h and H have also been averaged over the time between the formation of a well defined current (30 minutes) and the merge of the opposing fronts (which occurs typically between 3 and 4 hours).

As in the lock-release case, the cold current again propagates inward at a constant speed, for each of the 15 runs. For a given stratification this speed varies from 2-4 m s$^{-1}$, and is only a function of heat input. The left column of Fig. 5 shows the potential temperature, velocity and pressure perturbation (contoured and presented at 3 different heights) for the control stratification S_o (case 9 in the Table 2). The current formed in this impulse case has a similar head shape to that in a partial-depth lock release (e.g., compare Fig 2c and Fig. 5a) with the current-locked internal wave train seen as the small bump in the mixed layer directly above the current head (located approximately at $x = 20$ km, height = 2 km in Fig. 5a).

The current speed is again modestly affected by stratification, in this case increasing by 5-10% going from the weakest to strongest stratification, for a given heat input (in agreement with Seigel and van den Heever (2012)). This appears to be mediated partly by mixing between the oppositely-moving currents, but this will be further investigated in subsequent work. As stratification increases, both the boundary layer depth H and current thickness h
decrease, but the density contrast g' strengthens exerting a compensating effect on the current speed.

The decreases in h with stratification are slightly greater than those of H, but their ratio varies by no more than 30%, even though H changes by an order of magnitude (the extremes being cases 5 and 11). Thus, to a reasonable approximation the thickness of the density current appears to be determined by that of the mixed layer over land and is about 1/3 of the latter.

The Benjamin formula holds within about ±10% if referred to the actual intrusion height h, with values of F_h ranging from 0.9 to 1.1 in most cases, although a couple of the weakly stratified and strongly heated runs fall to 0.8. This is a remarkably consistent Froude number given that g' varies by a factor of ten. The Froude number calculated with respect to H is similarly consistent, and clusters around 0.55.

Another remarkable result is that the kinetic energy of the current per unit mass, U^2, is very nearly proportional to the energy input Q across all parameter variations, to an even greater degree than for the lock-release simulations. The result is more interesting here as it holds despite large changes in the internal stratification of the currents, which profoundly affects their character. This result is consistent with the scaling given in Antonelli and Rotunno (2007), who further show that $H \propto \sqrt{Q/N}$. We can confirm that the variation with N also holds here, by comparing two runs with the same Q but different S/S_o, such as cases 2 and 4. Here the stratification is quadrupled, but H is halved ($N \propto \sqrt{S}$). The ratio U/\sqrt{Q} is about 10% smaller than that of the full lock experiments, implying that these currents are traveling about 10% more slowly for the same initial energy input than did the full lock ones.

Table 2.

c. Continuous heating

A snapshot of a typical current is shown in Fig. 5e-h. A notable difference from the impulse case (panels a vs. e) is that the potential temperature within the current increases steadily as one approaches the head (located near the surface at $x=20$ and 22km in panels a and e, respectively), by which time it has become almost equal to that ahead of the current—in
other words there is little density contrast across the head of the current. The velocity
distribution on the other hand continues to show a sharp front in both cases (Fig. 5b vs. f); thus
the head is still a sharp and well-defined feature, temperature field notwithstanding. Similarly,
the pressure perturbation (Fig. 5c vs. g), defined as the difference between the pressure at
time t and at t=0, drops sharply by about 10Pa near the ground at \(x = 20 \) km in the impulse
case, while in the continuously heated case there is a more gradual reduction of \(\sim 40 \) Pa
between \(x = -20 \) and 20km over the entire body of the density current. The difference in the
horizontal pressure gradients between the 2 cases is easier to see if the pressure perturbation is
plotted at specific heights (Fig. 5 d vs. h).

Several other qualitatively new features appear in the continuously heated cases. First and
most importantly, the current velocity is no longer constant. The evolution in time of \(\theta \) and
\(u \) with horizontal distance from the coast is presented in the Hopfmuller (HM) plots, Fig. 6.
These plots clearly show a constant front velocity for the lock and impulse cases (panels a and
c), but acceleration for the continuously heated cases (panels e and g). In all cases the current
head is a well defined feature of the velocity field.

These plots also reveal the temperature gradient noted earlier within the current, visible
as a bulge of green or light blue color above and to the left of the front position, absent in
the impulse case. Additionally the lock release case shows the transient appearance of warm
fluid as a multicolored filament in the graph; this is due to the entrainment of warm fluid down
to low levels behind the current via Kelvin-Helmholtz instabilities as reported for example
by Sha and Kawamura (1991), but does not affect the density contrast ahead of the current).
Similar warming can be seen in the continuously heated cases but much farther downstream
of the head, appearing as blue swaths extending up and to the left in regions of strong inward
velocity; these features again appear to be due to downward mixing of high-theta air through
the cold current, perhaps aided by the residual turbulence advected from the warm boundary
layer (see the lower right of the figure panels). This mixing does not reach the 100m level in
the impulse case.
d. Front position and current characteristics

To extract the front position from the HM plots we developed a simple Matlab algorithm as follows: a 2D gradient field of the potential temperature is generated for a given level (typically at 100 m). This data contains the position of the front (and in some cases erroneous data from the convecting plumes etc.). The data is thresholded and the position of the remaining points extracted, the data is then manually checked and any spurious data is removed. Finally, the remaining points have a least square curve fitting algorithm applied to generate a polynomial best fit.

The time variation of quantities describing the density current is shown in Figs. 7-8 for a 200km steadily-heated, 3 diurnally-heated 200km islands and a 100km diurnally-heated island. This reveals a significantly more complicated picture than in the previous cases.

The steadily heated island has $\dot{Q}_o = 200 \text{Wm}^{-2}$ is denoted by filled black circles and the diurnally-heated examples by solid lines. The colors represent different heating rates with $\dot{Q}_o = 100$ (blue), 200 (orange) and 400 Wm$^{-2}$ (red). To identify effects of island width, the results from a 100km island diurnal run with $\dot{Q}_o = 100 \text{Wm}^{-2}$ is shown by the solid black line.

In each case after $\approx 3-6$ hours the front velocity U (Fig. 7(a)) starts to increase approximately linearly in time, from small initial values to speeds comparable to or slightly slower than those seen in the impulse cases (for a similar energy input Q). For example, by 10 hours the steady-heated case has accumulated more than 4 MJ and has a maximum speed of about 5.2 ms$^{-1}$, while according to Table 2 an impulse case with an input 4 MJ would have a front speed of about 5.6 ms$^{-1}$.

In the steady heated case, as the heat is turned off at 6 hours (Fig. 4) it takes about two hours for the cold offshore air to catch up with front after which the speed remains constant. Contributing to this are increases in H and h, each of which increases by a factor of 3 over the period retaining a ratio of roughly 3:1 across all simulations (Fig. 8a) while the density contrast g' roughly doubles (Fig. 8b).

However, these increases in h and g' are insufficient, according to Eq.(3), to explain a
quadrupling or more of U found in the simulations. Indeed F_h (Fig. 8c) increases from an initial low value of about 0.3 to about 0.5-0.8 (the maximum value depending on when the fronts collide at the center of the domain). Thus Benjamin’s formula for F_h, which predicts a value of 1.0 and was correct for the impulse case, fails badly for all the continuously-heated cases. Moreover, the kinetic-energy relationship that succeeded on the impulse case predicts, for our steady-heating case (where $Q = \dot{Q}_O \cdot t$ and $U \sim \sqrt{(Q)}$), that $U \sim \sqrt{t}$—when in fact we see something closer to $U \sim t$.

To see how the heat input Q is partitioned between the mean horizontal flow inside the current $\langle u \rangle$ and the bulk velocity of the front U consider Fig. 9 and 10 which show the ratios $\langle u \rangle / U$ and $U / \sqrt{Q (kg^{-1})}$ (each computed in the frame of reference of the moving current versus time). The quantity $\langle u \rangle$ is the horizontal velocity averaged over 0-h and from the front to 10 km in from the front. For most of the time before the opposing fronts collide, $\langle u \rangle$ is two to three times faster U, so the kinetic energy of the current is typically about an order of magnitude greater than $\frac{1}{2} U^2$. Hence for most of the duration, the majority of the kinetic energy appears as a flow inside the current, rather than in propagation of the front and current as a whole.

We are then faced with several questions: why do Benjamin’s formulae break down? Why does the temperature distribution change so much? And why does the current accelerate? We do not have a complete quantitative theory for this case, but provide below a preliminary diagnostic analysis helping to explain these phenomena.

4. Preliminary explanations of continuous heating phenomena

a. Temperature

Among the new phenomena emerging with continuous heating, the easiest to explain is the temperature distribution. As the land continuously heats the air above, the cold current moving over it gradually heats up. This means that the temperature of the density current will increase with distance inland, significantly reducing g' compared to an impulse case with
an initial Q equal to the accumulated Q in the continuously heated case (noting that in the impulse case all of the heat goes into the air ahead of the density current).

Quantitatively, the potential temperature near the ground should be governed approximately by

$$\frac{D\theta}{Dt} = \frac{Q}{c_p \rho H_{mix}}, \quad (4)$$

where D/Dt is the material derivative, Q is the surface heat flux, and H_{mix} is the depth through which the heat mixes or through which the mean of temperature is taken (we assume pressure is near the reference value, neglect both diffusion, the energy to heat soil surface and radiative heat sources). In the interior (ahead of the current), the bulk velocity is zero so that the material and local derivative are identical, and we take $H_{mix} = H$, the mixed layer height, so that the increase in temperature of the air in the mixed layer over time Δt is:

$$\Delta \theta_{int} \sim \frac{Q}{\rho c_p H} \Delta t \quad (5)$$

In the density current the situation is more complicated. As the front moves across the land the current head is constantly being fed with cooler air from the sea. As the land heats up, some of this cooler air will be heated as it is traveling over the land. The temperature of the air near the head of the current is determined by two competing processes: (i) heat from the ground $Q(t)$, and (ii) cool air being advected into the current head (which then overturns returning above the $u = 0$ surface).

Consider the head of the current with the $u = 0$ surface as a material surface. If the front moves a distance Δx (small enough that U and u are approximately constant) then the time the air in the current has felt heating from below is

$$t_h \sim \frac{\Delta x}{\langle u \rangle} \quad (6)$$

where $\langle u \rangle$ is the mean horizontal speed of the air inside the current.

Over the distance Δx, the current is moving at speed U so that:

$$\Delta x = U \Delta t \quad (7)$$
where Δt is the time it takes for the current to move Δx.

Combining these two equations gives

$$t_h \sim (U/\langle u \rangle) \Delta t$$ \hspace{1cm} (8)

Hence over the time interval Δt the change in the temperature of the head of the current due to heating from below will be

$$\Delta \theta_{\text{cur}} \sim \frac{Q}{\rho c_p h} \times (U/\langle u \rangle) \Delta t$$ \hspace{1cm} (9)

For reasons discussed shortly, the velocity $\langle u \rangle$ of the air inside the current in these simulations is several times faster than the propagation speed U of the front. This greater speed will advect cold sea air toward the front at a much faster rate than the propagation speed of the front itself, which means the air arriving at the front has had less time to pick up surface heating than has air ahead of the front. In other words, the ability of the land to warm up (low level) cool sea air traveling over it is reduced if $\langle u \rangle$ increases. So the faster the flow inside the current, the greater the temperature drop across the density current. This strengthens g', sharpening the density jump at the current head as observed (e.g., Thomsen et al. 2008), while feeding back negatively on the torque that created it.

For simplicity, if we neglect the time-dependence of parameters, we can solve for the temperature difference across the front obtaining:

$$\theta_{\text{int}} - \theta_{\text{cur}} = \frac{Qt}{\rho c_p H} \left(1 - \frac{U H}{\langle u \rangle h}\right).$$ \hspace{1cm} (10)

To keep this difference positive and the air behind the front cooler than air ahead of it, we must have $\langle u h \rangle > U H$. Since $H/h \approx 3$ robustly across all experiments and times, the inflow speed $\langle u \rangle$ must be at least three times the front speed. In the impulse cases, $\langle u \rangle/U \sim 1.2$; thus the greater $\langle u \rangle/U$ found in the continuous-heating simulations appears to be essential to overcome the inhibitive effect of continuous heating. Moreover, Fig. 10 shows that $\langle u \rangle$ begins to accelerate before U (Fig. 7a) and that the maximum of $\langle u \rangle/U$ is near the required
value of 3 when U actually starts to increase. This behavior is consistent with our reasoning that $\theta_{\text{int}} - \theta_{\text{cur}}$ needs to be positive to accelerate the current. Towards the end of the front propagation $\langle u \rangle / U$ approaches unity unity, which is close to the value found in the impulse case (note, as $U = 0$ at $t=0$, $\langle u \rangle / U$ is undefined before the sea breeze starts moving).

b. Dynamics

The acceleration of U just noted is attributable to the horizontal temperature gradient within the density current caused by the continuous heating. This gradient drives hydrostatically a torque within the inflow, hence generating vorticity within the moving current (via the baroclinic production term $\rho^{-2} \nabla \rho \times \nabla p$ in the vorticity equation). This speeds the inflow near the surface while slowing it in the top part of the current (this effect would presumably be damped without a free slip lower surface, but we have not quantified this). This vorticity generation is most evident near the coast ($x = 0$), where u near the surface continues to increase with time after the departure of the front (Fig. 6 f and h), in contrast to the impulse and lock-release cases where the velocity slightly decays with time (Fig. 6 b and d). A symptom of this may be seen by comparing the pressure distributions for the impulse and continuous cases (Fig. 5c vs. g and Fig. 5 d vs. h). Near the surface, there is a large pressure drop at the front ($x = 20\text{km}$) in the impulse case with relatively weak gradients elsewhere; whereas in the heated case, there is a more uniform pressure gradient extending far behind the current head. Moreover, this pressure gradient extends much higher in the heated case, up to 700m or so even though the $u = 0$ level is at 400-500m and acts to decelerate the return flow.

In lock-release and impulse experiments, where the density contrast is set up in the initial condition, the two density currents move at velocities that remain approximately constant both in time and along the length of the current once they get started. This motion is essentially inertial. Vorticity in the flow is concentrated in the shear zone between the two currents. Net forces and accelerations are concentrated in the immediate vicinity of the fronts;
fluid just ahead of the lower front is accelerated upward then rearward, making way for the
advance of the current. These accelerations are driven by the pressure drop, determined by the
temperature difference according to Eq.(3).

The success of the Benjamin formulae in these cases is not because of an instantaneous
force balance at the current head as might be suggested by the term g'/h, a hydrostatic pressure
difference. It is rather because $\sqrt{g'h}$, no matter when it is measured, records the initial torque
impulse that first propelled the two currents into motion. After this initial impulse, both the
velocity and the product $g'h$ are constants of the motion for the special case of steady flows.

The acceleration of the front seen in the continuous heating simulations, in particular,
requires the continuous generation of additional vorticity all along the length of the currents
near height h. This is provided by a landward pressure gradient extending from the ground
to several hundred meters above the zero-motion level. The pressure gradient is probably
associated with the vorticity generation by the horizontal temperature gradient near the
surface, but involves a much larger volume of air. It appears to be nearly constant in time,
resulting in a steady acceleration of U. Meanwhile, there is significant vorticity below the
$u = 0$ level which is being advected toward the head of the current (e.g. see supplementary
flow visualization of continuously heated current example).

It should be clear from this discussion that changing the density contrast across the
front cannot, on its own, lead to a change in velocity of the front as naively predicted from
Benjamin’s formulae. The front cannot simply run out ahead of the current. Indeed the
quantity g' is not well-defined in the heated cases, because temperature decreases with distance
behind the front and is nearly constant across the front. For the system to accelerate as a
whole, pressure gradients must be set up throughout the entire current. We believe this is the
fundamental reason for the failure of the Benjamin formulae, and in particular, for the delayed
acceleration of the current head and consequently low Froude numbers, in cases where the
density contrasts are introduced gradually rather than as an initial condition. Further studies
could attempt to model this more carefully with simplified flow models.
5. Discussion and Conclusions

This study has produced two main results, one concerning the effects of stratification on density currents and one concerning the effects of ongoing surface heating on the current.

First, we find that in the case where a density contrast is created near-instantaneously in stratified fluid by heating one part of the domain from below, the total energy input needed to do this is a surprisingly robust indicator of the speed of the resulting density current (Table 2). This is true for a very wide range of stability values and a range of total energy inputs, producing a range of current depths. The predictor works also for full lock-release cases (but not very well for “partial-depth lock release”). The speed predicted from this is more accurate (±5%) than could be diagnosed from the Benjamin formula based on the estimated parameters of the flow (h and g'), let alone from the known initial conditions. This scaling was predicted theoretically by Antonelli and Rotunno (2007). While this result is interesting, its practical utility is limited because the heating that would produce this situation would normally be gradual rather than near-instantaneous; in that case, the limiting speed is attained only if the heating is switched off, and only well after the time that happens (in simulations here, several hours afterward).

Indeed, our second and more important result relates to what happens when cold air inflows are generated more realistically by a steady input of heat from a continental surface, rather than an initially specified density contrast as typical in laboratory analogs and past idealized computations. Observations by Carbone et al. (2000) over the Tiwi islands found F_h values of 0.5-0.6 and front speeds of 1-2 ms^{-1}, and speculated that the differences between “dam break [theory] and sea-breeze was due to diabatic heating as air passes over a monotonically increasing fetch of land.” We would concur with this explanation, and have presented simulations showing that indeed the presence of ongoing surface heating slows the current propagation.

Moreover, the longer acceleration times over larger islands, could lead to stronger convection. Thus the dynamics of sea breeze fronts may in part explain the observed increase
in convective vigor as a function of island size. However, since the dynamics of the transient
accelerating sea breezes are not yet fully understood, it remains unclear whether the dispersion
relation proposed by RSL08 is generally applicable, though the linear theory of sea breeze by
Rotunno (1983) is a very similar model. Further study is clearly needed to resolve this enigma.

All currents simulated here show an internal circulation, with near-surface winds
outrunning the front itself. Consequently from mass conservation, the frontal boundary is
taller than the current, by roughly a factor of two for steady currents (e.g. Fig. 2 f). The
main change associated with steady surface heating is the generation of internal temperature
gradients and vorticity within the cold current, which cause a shallowing and intensification
of the internal circulation while weakening the density contrast at the front itself, slowing the
frontal propagation. Thus, the sea breeze arrives later but is followed by stronger near-surface
winds.

Lock-release experiments have a very quick adjustment to a steady state so that most
of the energy in the lock is given to the current and intrusion with about 10 % being lost as
wave energy. This energy loss occurs because the current head pushes on fluid in front of
it and a standing wave forms between the current head and the top of the mixed layer (e.g.
Fig. 2a), moderating the current speed. Conversely, in the more realistic situation of gradual
heating over a day, the energy is partitioned over the entire current resulting in a slowly
increasing front speed. Because of this diurnal heating the Froude numbers characterizing real
density current are initially much less than those given in the experiments and only approach
theoretical values in the mature stage of a sea breeze front.

If surface heating is switched off, currents eventually begin to resemble their impulsively-
generated counterparts through a process of frontogenesis whereby the accelerated
near-surface winds advect cold air toward the head of the current. A similar mechanism
was seen in Muir and Reeder (2010), though in their case there was also a background wind
profile, so the dynamics are slightly different (they also included surface roughness effects
which we have not). This process, however, takes several hours in the cases examined here
where heating was switched off at midday. Thus, real sea breezes do not come near the steady
state condition assumed in idealized theories.

The propagation speeds of sea breeze and other mesoscale frontal phenomena affect
daytime weather variations and will affect the timing of convective triggering in cases
where this occurs. Other aspects of the dynamics illustrated here may also be important for
the triggering of convection. For example, heating of the surface underneath the outflows
generates vorticity, which may be advected into the frontal region, and may affect the
dynamics of growing cumulus clouds. Also, the gravity waves generated by these density
currents, though containing only a small amount of energy compared to that of the current
itself, may in a conditionally unstable environment be sufficient to account for the triggering
of convection ahead of the frontal boundary. We plan to explore both of these aspects in
subsequent work.

Acknowledgments. This work was supported by the NSF Physical and Dynamical Meteorology
program, grant DYN078550. The computational component of this work was supported in part by the
facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing
Center.
REFERENCES

Printed July 16, 2012.
Figure Captions

Fig. 1. Sample initial soundings for lock-release experiments, showing a partial-depth lock release where $D = 0.8$ km and $H = 1.6$ km (see Fig. 2), with three different values of upper-layer stratification S. The solid lines show the temperature profiles below H, which do not vary with S, with diamonds marking the profile in the cooler (ocean) region where it differs from that in the warmer (land) one. The triple dot-dash, dotted and long-dash lines show the temperature above H for stratifications of $0.5S_o$, S_o, and $2S_o$ respectively.

Fig. 2. Vertical cross-section of potential temperature (left) and horizontal velocity (right) at $t = 0.5, 1.5, 2.5, 3.5$ hours for a partial-depth lock release capped by a strongly stratified layer (case 12 in Table 1). In these and subsequent contour plots, the unheated region (ocean) unheated region is on the left half (-50 km to 0) and the heated region (land) is on the right (0 to 50 km). The center of the island is at 50 km.

Fig. 3. Near-initial temperature profiles for impulse heating experiments with three values of stratification, 30 minutes after application of the heating impulse. Below H, profiles differ significantly between the heated (land) and unheated (ocean) regions, with the latter’s denoted by diamonds. Above H, profiles are approximately the same in either region, but vary according to S; profiles are shown for S of $0.5S_o$, S_o and $2S_o$ (cases 8, 9 and 10 in Table 2) with triple-dot-dash, dotted and long-dashed lines, respectively. Note: the offshore S_o sounding is also the one used for all the continuous-heating runs.

Fig. 4. Accumulated surface heat input versus time for steady (solid line) and diurnal (dot-dashed line) heated with $\dot{Q}_o = 200$ W m$^{-2}$.
Fig. 5. Vertical cross-section of potential temperature, horizontal velocity and pressure perturbation and pressure perturbation at the surface and $z = 350\text{m}$ and 700m, for an impulse case (a-d) at 2 hours (case 9 in Table 2) and the steady heating case (d-f) at 6 hours with $\dot{Q}_o = 100\text{Wm}^{-2}$.

Fig. 6. Hopfmuller plots of potential temperature (left) and horizontal velocity (right) for sample partial-depth lock release (case 12), impulse heating (case 9, Q=1e6 J and $S = S_o$), constant heating and diurnal heating ($L_x = 100\text{km}$ and $\dot{Q}_o = 100\text{Wm}^{-2}$) cases. In each case the heated surface or ‘land’ is between 0 and 50 km east of the coast. Variables are sampled at a height of 100 m above the surface.

Fig. 7. Current data for 5 different island simulations with U and h computed near the head of the moving current (see main text) and H at the island center. The steady heating case with $\dot{Q}_o = 200\text{Wm}^{-2}$ on a 200km is delineated by black filled circles. The 4 other line plots are for diurnally heated islands. Blue, orange and red lines are 200km islands with \dot{Q}_o 100, 200 and 400 Wm$^{-2}$, respectively and the black solid line is for a 100 km island with $\dot{Q}_o = 100\text{Wm}^{-2}$. Quantities are plotted from the time a well defined front has formed (e.g. see Fig 6 g and h) up to time of the merge of the opposing fronts.

Fig. 8. Additional current data: same plotting convention as in Fig. 7 with h/H, g' and F_h all being computed near the head of the moving current (see main text).

Fig. 9. Ratio of front speed to square root of surface heat input: same plotting convention as in Fig. 7.

Fig. 10. Ratio of the mean horizontal flow speed inside the current head $\langle u \rangle$ to the front speed U with the same plotting convention as in Fig. 7.
Tables

TABLE 1. Characteristics of full and partial depth lock release experiments with prescribed quantities given on the left of the vertical line, and those computed from the density current on the right. The stratification above \(H \) is denoted \(S = d\theta/dz \), control stratification \(S_o \) is from a dry tropical sounding (see section 3 a a for definitions of the various Froude numbers).

<table>
<thead>
<tr>
<th>Case</th>
<th>(S/S_o)</th>
<th>(H) (km)</th>
<th>(D/H)</th>
<th>(\Delta \theta) (K)</th>
<th>(g') (ms(^{-2}))</th>
<th>(F_{HS})</th>
<th>(h/H)</th>
<th>(U) (ms(^{-1}))</th>
<th>(F_H)</th>
<th>(F_h)</th>
<th>(U/\sqrt{Q/10^5}) (kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8</td>
<td>1.6</td>
<td>1</td>
<td>0.3</td>
<td>0.01</td>
<td>0.50</td>
<td>0.44</td>
<td>2.5</td>
<td>0.63</td>
<td>0.94</td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td>1.6</td>
<td>1</td>
<td>0.3</td>
<td>0.01</td>
<td>0.50</td>
<td>0.43</td>
<td>2.3</td>
<td>0.58</td>
<td>0.88</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>1/2</td>
<td>1.6</td>
<td>1</td>
<td>0.3</td>
<td>0.01</td>
<td>0.50</td>
<td>0.42</td>
<td>2.2</td>
<td>0.55</td>
<td>0.85</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1.6</td>
<td>1</td>
<td>0.3</td>
<td>0.01</td>
<td>0.50</td>
<td>0.44</td>
<td>2.2</td>
<td>0.55</td>
<td>0.83</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.8</td>
<td>1</td>
<td>0.3</td>
<td>0.01</td>
<td>0.50</td>
<td>0.41</td>
<td>1.7</td>
<td>0.60</td>
<td>0.94</td>
<td>1.1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3.2</td>
<td>1</td>
<td>0.3</td>
<td>0.01</td>
<td>0.50</td>
<td>0.40</td>
<td>2.9</td>
<td>0.50</td>
<td>0.81</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1.6</td>
<td>1/8</td>
<td>0.3</td>
<td>0.01</td>
<td>0.24</td>
<td>0.08</td>
<td>1.2</td>
<td>0.30</td>
<td>1.10</td>
<td>1.6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1.6</td>
<td>1/4</td>
<td>0.3</td>
<td>0.01</td>
<td>0.33</td>
<td>0.13</td>
<td>1.5</td>
<td>0.38</td>
<td>1.10</td>
<td>1.4</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.6</td>
<td>1/2</td>
<td>0.3</td>
<td>0.01</td>
<td>0.43</td>
<td>0.25</td>
<td>1.9</td>
<td>0.48</td>
<td>0.95</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1.6</td>
<td>1/2</td>
<td>0.15</td>
<td>0.005</td>
<td>0.43</td>
<td>0.27</td>
<td>1.3</td>
<td>0.46</td>
<td>0.88</td>
<td>1.2</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1.6</td>
<td>1/2</td>
<td>0.6</td>
<td>0.02</td>
<td>0.43</td>
<td>0.24</td>
<td>2.6</td>
<td>0.46</td>
<td>0.94</td>
<td>1.2</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1.6</td>
<td>1/2</td>
<td>1.2</td>
<td>0.04</td>
<td>0.43</td>
<td>0.27</td>
<td>3.8</td>
<td>0.48</td>
<td>0.91</td>
<td>1.2</td>
</tr>
</tbody>
</table>
TABLE 2. Characteristics of impulse heating experiments with prescribed quantities given on the left of the vertical line and those computed from the density current on the right. Stratification \(S = d\theta/dz \), control stratification = \(S_o \) is from a dry tropical sounding. Other symbols described in text.

<table>
<thead>
<tr>
<th>Case</th>
<th>(S/S_o)</th>
<th>(Q/10^5(J))</th>
<th>(H(\text{km}))</th>
<th>(h/H)</th>
<th>(U(\text{ms}^{-1}))</th>
<th>(g'(\text{ms}^{-2}))</th>
<th>(F_H)</th>
<th>(F_h)</th>
<th>(U/\sqrt{Q/10^5(\text{kg}^{-1})})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8</td>
<td>5</td>
<td>1.7</td>
<td>0.42</td>
<td>1.9</td>
<td>0.005</td>
<td>0.64</td>
<td>1.0</td>
<td>0.85</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td>5</td>
<td>1.2</td>
<td>0.39</td>
<td>1.9</td>
<td>0.009</td>
<td>0.57</td>
<td>0.9</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>1/2</td>
<td>5</td>
<td>0.9</td>
<td>0.34</td>
<td>1.9</td>
<td>0.015</td>
<td>0.53</td>
<td>0.9</td>
<td>0.85</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td>0.6</td>
<td>0.33</td>
<td>2.0</td>
<td>0.020</td>
<td>0.60</td>
<td>1.1</td>
<td>0.89</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>0.35</td>
<td>0.32</td>
<td>2.0</td>
<td>0.030</td>
<td>0.62</td>
<td>1.1</td>
<td>0.89</td>
</tr>
<tr>
<td>6</td>
<td>1/8</td>
<td>10</td>
<td>2.5</td>
<td>0.41</td>
<td>2.6</td>
<td>0.008</td>
<td>0.58</td>
<td>0.9</td>
<td>0.82</td>
</tr>
<tr>
<td>7</td>
<td>1/4</td>
<td>10</td>
<td>1.9</td>
<td>0.35</td>
<td>2.6</td>
<td>0.013</td>
<td>0.53</td>
<td>0.9</td>
<td>0.82</td>
</tr>
<tr>
<td>8</td>
<td>1/2</td>
<td>10</td>
<td>1.2</td>
<td>0.36</td>
<td>2.8</td>
<td>0.017</td>
<td>0.62</td>
<td>1.0</td>
<td>0.89</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>10</td>
<td>0.9</td>
<td>0.31</td>
<td>2.9</td>
<td>0.027</td>
<td>0.58</td>
<td>1.1</td>
<td>0.91</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>10</td>
<td>0.6</td>
<td>0.30</td>
<td>2.9</td>
<td>0.038</td>
<td>0.63</td>
<td>1.1</td>
<td>0.91</td>
</tr>
<tr>
<td>11</td>
<td>1/8</td>
<td>20</td>
<td>3.1</td>
<td>0.41</td>
<td>3.7</td>
<td>0.013</td>
<td>0.58</td>
<td>0.9</td>
<td>0.83</td>
</tr>
<tr>
<td>12</td>
<td>1/4</td>
<td>20</td>
<td>2.6</td>
<td>0.38</td>
<td>3.6</td>
<td>0.019</td>
<td>0.52</td>
<td>0.8</td>
<td>0.80</td>
</tr>
<tr>
<td>13</td>
<td>1/2</td>
<td>20</td>
<td>1.8</td>
<td>0.38</td>
<td>3.6</td>
<td>0.028</td>
<td>0.50</td>
<td>0.8</td>
<td>0.80</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>20</td>
<td>1.3</td>
<td>0.36</td>
<td>4.0</td>
<td>0.037</td>
<td>0.58</td>
<td>1.0</td>
<td>0.89</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>20</td>
<td>0.9</td>
<td>0.30</td>
<td>4.0</td>
<td>0.060</td>
<td>0.56</td>
<td>1.0</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Fig. 1. Sample initial soundings for lock-release experiments, showing a partial-depth lock release where $D = 0.8$ km and $H = 1.6$ km (see Fig. 2), with three different values of upper-layer stratification S. The solid lines show the temperature profiles below H, which do not vary with S, with diamonds marking the profile in the cooler (ocean) region where it differs from that in the warmer (land) one. The triple dot-dash, dotted and long-dash lines show the temperature above H for stratifications of $0.5S_o$, S_o, and $2S_o$ respectively.
Fig. 2. Vertical cross-section of potential temperature (left) and horizontal velocity (right) at $t = 0.5, 1.5, 2.5, 3.5$ hours for a partial-depth lock release capped by a strongly stratified layer (case 12 in Table 1). In these and subsequent contour plots, the unheated region (ocean) unheated region is on the left half (-50km to 0) and the heated region (land) is on the right (0 to 50 km). The center of the island is at 50 km.
FIG. 3. Near-initial temperature profiles for impulse heating experiments with three values of stratification, 30 minutes after application of the heating impulse. Below H, profiles differ significantly between the heated (land) and unheated (ocean) regions, with the latter’s denoted by diamonds. Above H, profiles are approximately the same in either region, but vary according to S; profiles are shown for S of $0.5S_o$, S_o and $2S_o$ (cases 8, 9 and 10 in Table 2) with triple-dot-dash, dotted and long-dashed lines, respectively. Note: the offshore S_o sounding is also the one used for all the continuous-heating runs.
Fig. 4. Accumulated surface heat input versus time for steady (solid line) and diurnal (dot-dashed line) heated with $\dot{Q}_o = 200\text{Wm}^{-2}$.
Fig. 5. Vertical cross-section of potential temperature, horizontal velocity and pressure perturbation and pressure perturbation at the surface and $z = 350$ m and 700 m, for an impulse case (a-d) at 2 hours (case 9 in Table 2) and the steady heating case (d-f) at 6 hours with $Q_o = 100 \text{Wm}^{-2}$.
Fig. 6. Hopfmuller plots of potential temperature (left) and horizontal velocity (right) for sample partial-depth lock release (case 12), impulse heating (case 9, $Q=1e6$ J and $S=S_o$), constant heating and diurnal heating ($L_x=100$km and $\dot{Q}_o=100 W m^{-2}$) cases. In each case the heated surface or ‘land’ is between 0 and 50 km east of the coast. Variables are sampled at a height of 100 m above the surface.
Fig. 7. Current data for 5 different island simulations with U and h computed near the head of the moving current (see main text) and H at the island center. The steady heating case with $\dot{Q}_o = 200\,\text{Wm}^{-2}$ on a 200km is delineated by black filled circles. The 4 other line plots are for diurnally heated islands. Blue, orange and red lines are 200km islands with \dot{Q}_o 100, 200 and 400 Wm$^{-2}$, respectively and the black solid line is for a 100 km island with $\dot{Q}_o = 100\,\text{Wm}^{-2}$. Quantities are plotted from the time a well defined front has formed (e.g. see Fig 6 g and h) up to time of the merge of the opposing fronts.
Fig. 8. Additional current data: same plotting convention as in Fig. 7 with h/H, g' and F_h all being computed near the head of the moving current (see main text).
Fig. 9. Ratio of front speed to square root of surface heat input: same plotting convention as in Fig. 7.
FIG. 10. Ratio of the mean horizontal flow speed inside the current head $\langle u \rangle$ to the front speed U with the same plotting convention as in Fig. 7