On the role of the stratiform cloud scheme in the inter-model spread of cloud feedback

Geoffroy O., Sherwood S., Fuchs D.

Climate Change Research Centre, The University of New South Wales

Key points

- The stratiform cloud scheme plays an important role in the spread of cloud feedback, both in Sc regions and globally
- Subgrid PDF schemes tend to impose a positive low cloud feedback and stability dependence a negative feedback
- Stability dependence does not fully determine the sign of the feedback, including in marine stratus regions

Abstract

This study explores the role of the stratiform cloud scheme in the inter-model spread of cloud feedback. Six diagnostic cloud schemes used in various CMIP (Coupled Model Intercomparison Experiment) climate models are implemented (at low and mid-levels) into two testbed climate models, and the impacts on cloud feedback are investigated. Results suggest that the choice of stratiform cloud scheme may contribute up to roughly half of the intermodel spread of cloud radiative responses in stratocumulus (Sc) regions, and may determine or favour a given sign of the feedback there. Cloud schemes assuming a probability density function for total water content consistently predict a positive feedback in Sc regions in our experiments. A large negative feedback in Sc regions is obtained only with schemes that consider variables other than relative humidity (e.g. stability). The stratiform cloud scheme also significantly affects cloud feedback at the scale of the tropics and at global scale. Results are slightly less consistent for tropical means, likely indicating coupling with other boundary layer processes such as convective mixing.
1. Introduction

The cloud radiative response to global warming, or cloud radiative feedback, in particular that contributed by tropical low clouds, has been identified as a major source of spread of climate sensitivity (Dufresne and Bony, 2008; Zelinka et al., 2016). Understanding the sources of spread of such feedbacks is important for improving model physics, leading future climate model development priorities, and narrowing uncertainties in future climate projections. Parameterizations of the boundary layer and/or shallow convective processes have been shown to play an important role in this spread (Gettelman et al., 2012; Zhang et al., 2012, Sherwood et al., 2014, Webb et al., 2015). The analysis of Qu et al. (2014) suggests a large role for cloud macrophysics (i.e. the representation of cloud cover) and turbulence parameterizations in the spread of low cloud feedback, which in turn is a dominant influence on global feedback. However, other studies point to the importance of convective physics in global climate sensitivity, for example entrainment or precipitation efficiency rates (Stainforth et al., 2005; Zhao et al., 2016). This raises the question of the relative roles of the low-cloud, convective, and other parameterizations in explaining the model spread.

If dry static stability alone controlled cloud amount, a warmer climate would have more low cloud (e.g. Bretherton et al., 2013). However sea surface and free troposphere warming at constant relative humidity can oppose this, through thermodynamic mechanisms leading to a reduction of the cloud layer relative humidity (Rieck et al., 2012; Bretherton, 2015). Qu et al. (2014) show that climate models employing a total water probability density function (PDF)-based low-cloud scheme predict low cloud cover (LCC) reduction in the stratocumulus (Sc) regions, whereas most models employing a scheme with a stability dependent cloud fraction predict an increase of LCC in the Sc regions. However, this relationship between the Sc-regions LCC response and parameterization type may be fortuitous, due to the limited number of models and parameterization type combinations of the CMIP ensemble, and the lack of independence between climate models.

In this study, we focus on the role of the stratiform cloud macrophysics and microphysics parameterizations in the CMIP inter-model spread of cloud feedback. We implement a range of stratiform cloud schemes (cloud fraction and cloud water content parameterizations) found in CMIP models into two testbed models, CAM4 (Neale et al., 2010) and CSIRO-Mk3L (Gordon et al., 2002; Phipps et al., 2011), and assess their impact on cloud responses. Section 2 describes the models used, the cloud schemes implemented, and the experiments performed. The results are presented in section 3. Final discussion and conclusions are drawn in section 4.

2. Methodology and numerical experiments

2.1 General method and models

We modify the original stratiform cloud schemes of both CAM4 and CSIRO-Mk3L, by implementing cloud parameterizations originating from others climate models of the CMIP ensemble. CAM4 is the atmospheric component of CESM climate model, described by Neale et al. (2010). Here we use zonal and meridional resolutions respectively of 2.5° and 1.9° for CAM4, and 5.6° and 3.2° for CSIRO-Mk3L. In CAM4, deep and shallow convection schemes follow Zhang and McFarlane (1995) and Hack et al. (1993), respectively. In CSIRO-Mk3L, the deep convection scheme follows Gregory and Rowntree (1990) and the model is run...
without shallow convection. Lastly, CSIRO-Mk3L uses the same turbulence scheme as CAM4, which in particular features a non-local atmospheric boundary layer scheme based on Holtslag and Moeng (1991). Stratiform cloud schemes of each model are described in the next subsection. The equilibrium climate sensitivities (ECS) of CSIRO-Mk3L and CCSM4 are roughly 3.4 K and 2.9 K (Geoffroy et al., 2013), respectively.

The perturbation or replacement of the stratiform cloud scheme of a given model allows the effect of this scheme to be isolated in a way not possible with multimodel analyses. This perturbed physics ensemble, using two testbed models, is considered alongside the subset of CMIP models containing the considered cloud schemes, in order to situate the results in a broader context of the multimodel ensemble, and highlight the role of the cloud scheme in the ensemble spread of cloud feedback. For practical reasons, we consider only schemes having a diagnostic cloud fraction and, generally, a diagnostic cloud water content, and which are not directly coupled to other parameterizations (such as turbulence and convection). For this reason, this study focuses on cloud schemes of a subset of climate models of the CMIP3 (Meehl et al., 2007) and CMIP5 (Taylor et al., 2012) ensemble. These schemes are grouped into five categories referred to as A, B, C, D and E as indicated, along with the associated CMIP models, in Table 1. These five cloud-scheme categories represent the schemes used in almost two thirds of the CMIP3 and CMIP5 climate models studied in Qu et al (2014). Note that for any cloud scheme used in both CMIP3 and CMIP5 models, only results from the CMIP5 model are shown. The next section provides a brief description of the cloud schemes, details being provided in the appendix.

2.2 Perturbed cloud schemes description

Stratiform cloud scheme Category A represents the most common type used in CMIP models. We refer to schemes in this category as probability-density function (PDF) schemes. Cloud fraction and cloud water content are diagnosed from liquid temperature (or temperature) and total water content assuming a PDF for the sub-grid distribution of the moisture (e.g. Smith, 1990). Three subclasses can be considered, based on (among other differences) the shape of PDF used. Category A1, A2 and A3 refer to Le Treut and Li (1991) (uniform distribution), Smith (1990) (triangular distribution) and Bony and Emanuel (2001) (Gaussian distribution) schemes, respectively. For each scheme, other particular specifications are provided in the appendix. CMIP3 models with Category A schemes (not shown) show similar cloud responses to CMIP5 models (Qu et al., 2014). The climate models used in our study are listed in Table 1.

The CSIRO-Mk3L stratiform cloud scheme belongs to Category A1. Note that in CSIRO-Mk3L, the threshold relative humidity (RH) varies in convective regions between cloud base and cloud top. This assumption is not made when implementing this scheme in CAM4. The CSIRO-Mk3L stratiform cloud scheme is based on Rotstayn (1997): both water vapor and cloud water content are prognostic variables.

Category B represents the cloud scheme implemented in the CMIP3 model CGCM (Scinocca et al., 2008). Note that this scheme was also erroneously attributed to CanESM2 (CMIP5 model) by Chyleck et al. (2011) and Qu et al. (2012) (J. Cole personnal communication (See also http://ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=8A6F8F67-1). The cloud fraction depends on both RH and local stability. This stability dependence directly enters the cloud fraction formulation as an additional parameter, rather than being expressed in a separate Sc
cloud scheme. For profiles less stable than the local moist adiabatic, cloud fraction is a function of RH only.

Category C represents the cloud scheme implemented in the CMIP5 model INM-CM4 (Volodin, 2014): the cloud fraction is a linear function of RH with the coefficients varying with local stability, and the cloud water content is a function of temperature only.

Category D includes schemes that are implemented in climate models from which the atmospheric component (or the cloud scheme) are based on CAM3 or CAM4, which have identical cloud schemes (Collins et al. 2003; Neale et al., 2010). In addition to the NCAR model CESM, the other CMIP5 models employing this scheme are BCC-CSM1.1 (Wu et al., 2010) and NorESM (Bentsen et al., 2012) and FGOALS-g2 (Li et al., 2013). In Category D models, the cloud fraction is a function of RH. Cloud fraction also depends on stability. In contrast to Categories B and C, this dependence on stability is expressed through a separate Sc scheme: when a marine stratocumulus is diagnosed (from local stability), its cloud fraction is a function of lower tropospheric stability (LTS). The cloud water content is prognostic and is related to temperature, water vapour and cloud water tendencies, cloud fraction and thermodynamical variables.

Sub-category E1 of category E denotes parameterizations based on the CCM3 scheme (Kiehl et al. 1996). This scheme is diagnostic and cloud fraction is expressed as a function of RH and both vertical velocity and stability. Note that in CCM3, the cloud water for cloud radiative properties differs from that used to diagnose stratiform precipitation. Here the former formulation is also used in the precipitation calculation. One other model of the CMIP ensemble (FGOALS-s2) has similar dependence of cloud fraction on vertical velocity. The FGOALS-s2 stratiform scheme is denoted E2. Note that FGOALS-s2 contains also a Sc scheme that is not implemented for E2.

In perturbed cloud-scheme experiments, both cloud fraction and cloud water content parameterizations are modified. The stratiform precipitation parameterization is kept as that of the original model. Moreover, in both CSIRO-Mk3L and CAM4, cloud water is split into liquid and ice according to temperature. These calculations of liquid and ice fraction are unchanged. Finally, the convective cloud fraction and its combination with stratiform cloud fraction to get the total cloud fraction at a given level are also unchanged.

2.3. Numerical experiments

Cloud responses to global warming in CSIRO-Mk3L and CAM4 are determined by using AMIP and AMIP+4K experiments. Note that sea ice is unchanged in the AMIP+4K experiments for both models. Hence, CAM4 simulations analysed in this study are not rigorously equivalent to CCSM4 simulations of the CMIP5 archive responses, but responses do not differ significantly. In addition to their low numerical cost, AMIP experiments exclude any tropospheric fast adjustment and enable a direct comparison between simulations with similar SST pattern. For each CMIP model, we use AMIP (fixed SST) and AMIP4K (fixed SST plus 4 K) when available (only in CMIP5). Otherwise, experiments used are, in preferential order of availability: the abrupt4xCO2 (ocean coupled abrupt 4xCO2) experiment (CMIP5); the slab (slab-ocean coupled control simulation) and 2xco2 (slab-ocean coupled simulation with CO2 doubling) experiments (CMIP3), referred hereafter as slab experiments; or the 1pctto2xCO2 experiments (ocean coupled with 1% CO2 increase per year to doubling followed by a stabilization; CMIP3).
In the case of the abrupt experiments, responses, of cloud fraction or cloud radiative effect, CRE changes per unit of warming, are determined from a linear regression method (Gregory et al., 2004) (regression of the considered variable change against the surface air temperature change, by using, for both variables, annual means over the considered region). The CRE is defined as the difference between all-sky and clear-sky net incoming (longwave plus shortwave) radiative fluxes at top of the atmosphere. Note that we have not used the control experiment to attempt to remove any potential drifts, as these have been found not to significantly affect estimates of the feedback parameter for CMIP5 models (Geoffroy et al., 2013). Responses estimated from AMIP and from abrupt4xCO2 experiments show good agreement for the CMIP5 ensemble of models with both types of experiments available (not shown), in agreement with the results of Ringer et al. (2014). For both AMIP type, slab type, and 1pctt02xCO2, the responses are calculated by differencing 15-year means of the control and perturbed states (defined, for 1pctt02xCO2, as the first years and the last years for the simulation, respectively). In particular, the forcing adjustment contribution is not removed for these estimates.

3. Results

3.1. Stratocumulus regions

As a first step, the stratiform cloud scheme is modified in lower levels only, below 750 hPa. Note that the threshold 750 hPa was used as a limit for low cloud because it is the default separation-level used in CAM4 between low and midlevel clouds (we applied the same threshold with CSIRO-Mk3L). To evaluate the impact of model changes on the cloud feedback, we focus mainly on two variables: cloud radiative effect (CRE) and low cloud cover (LCC). The LCC is defined as the mean of the maximum (stratiform plus convective) cloud fraction below 700 hPa in each atmospheric column (the level was chosen slightly higher than that used to perturb cloud, because changes were seen to extend somewhat above 750 hPa). The CRE change is closely related to the cloud radiative feedback, although quantitatively different due to masking effects (Soden and Held, 2006). By contrast, cloud cover changes allow us to distinguish cloud responses at different levels and highlight the sign of the cloud responses (under the assumption that cover changes dominate over, or are strongly correlated with, optical depth changes). Figure 1 shows mean LCC change and mean CRE in the stratocumulus (Sc) regions, and associated normalized changes by the value in the mean state, for both CMIP models and CAM4 and CSIRO-Mk3L perturbed experiments. Sc regions are defined as five rectangular regions of 20° latitude by 40° longitude in the eastern margins of tropical oceans, as in Qu et al. (2014).

The results show that a modification of the cloud scheme in the lower levels leads to a large range of responses for both LCC change and CRE change, highlighting the importance of the stratiform cloud parameterization for cloud feedback. As shown in Figure 2, changing the cloud scheme below 750 hPa only significantly impacts both cloud fraction and cloud fraction change in the lowest levels suggesting that the impact on global cloud feedback is associated with low level clouds response, and not with higher clouds. The standard deviations of the LCC response are 0.60 % K\(^{-1}\) and 0.26 % K\(^{-1}\) for CAM4 and CSIRO-Mk3L ensembles, respectively, against 0.81 % K\(^{-1}\) for the CMIP sub-ensemble. Hence, the cloud scheme may explain up to roughly 50 % of the CMIP sub-ensemble spread of Sc-LCC changes (and 40 %
for the CRE). This value corresponds to the mean ratio of CAM4 and CSIRO-Mk3L ensembles standard deviations to CMIP sub-ensemble standard deviation. Note that this rough estimate is only an upper bound because the cloud feedback dependencies to the cloud scheme are not systematically consistent. Note also that weighting the standard deviation calculation by the number of CMIP models in each cloud scheme category does not significantly impact the results. One can notice that CAM4 is more sensitive to the cloud scheme changes than is CSIRO-Mk3L. While both models have identical turbulence schemes, CSIRO-Mk3L has no shallow convection scheme. Hence, the larger sensitivity of CAM4 to the cloud scheme may be related to an interaction with the representation of shallow convection.

A direct comparison between each simulation could require a careful retuning of the model. An advantage of fixed-SST experiments is that the perturbed model will at least have the same SST and thus a relatively similar climate. However, the impact of model changes on the atmospheric radiative budget, or the direct effect of changes in mean-state cloud cover, could alter the cloud feedbacks. Indeed, modification of the cloud scheme involves some spreading of the range of LCC and CRE. The LCC and CRE within Sc regions of the modified models fall relatively within the range of CMIP models, with a tendency for CAM4 to be characterized by large LCC, with a mean bias of about 5 % in comparison with the CMIP ensemble, and a tendency for CSIRO-Mk3L to be characterized by small LCC and small (in absolute value) CRE with mean biases of -4 % and 9 W m$^{-2}$, respectively (Figure S1). By considering both CSIRO-Mk3L and CAM4 simulations together, no particular relationship is found between these variables in the mean cloud state and their response. In addition, the deployment of some cloud schemes (e.g. category B) changes the mean state CRE in opposite directions in CAM4 and CSIRO-Mk3L (Figure S1). However, the impact on LCC tends to have similar sign in both models. Retuning simulations would raise the question of which parameters to use for retuning, such as the parameters related to cloud radiative properties, or those of the cloud scheme, in particular for cloud schemes that have several parameters. Moreover, changing only the cloud scheme parameters may be not enough to impose a given CRE or LCC mean state. Nonetheless, in order to partially remove effects associated with cloud changes in the mean state, we also show normalized change as done by Webb et al. (2012) for the CRE change (Figure 1c,d). Note however that focusing on normalized changes is not equivalent to retuning due to interactions between the cloud microphysics and macrophysics and their environment, at the process level. Moreover, normalization of the CRE responses is complicated by the masking offset between the CRE response and the cloud feedback (Soden and Held, 2006). In the following, the behaviour of each cloud scheme is discussed and responses are compared to CMIP models.

As shown in Qu et al. (2014), CMIP models with a PDF scheme are all characterized by a decrease in LCC in the Sc regions upon warming. This suggests a close link between the type of cloud scheme and the sign of the low cloud feedback in the Sc regions. The scheme-swapping results presented here confirm the robustness of this dependency (Figure 1a,b). In particular, implementation of any of the PDF schemes in CAM4 reverses the sign of the Sc-LCC change to a negative value, causing an increase of the (negative) Sc-CRE change. In PDF schemes, the cloud fraction can be expressed as a diagnostic function of RH alone. Putting aside feedback effects on RH changes associated with the cloud change itself (Brient and Bony, 2012), the behaviour associated with PDF schemes suggests that climate models tend to predict a reduction in RH in subtropical regions in a warmer climate, leading to a
reduction in cloud cover (e.g. Sherwood et al., 2010). Apart from the dependency of cloud fraction to relative humidity, the role of cloud water content as predicted by these schemes would need to be investigated. However these changes are relatively moderate, suggesting the role of other important processes in imposing the magnitude of the cloud feedback.

The other scheme categories all involve dependence of the cloud fraction on other variables besides local humidity, in particular, stability. Qu et al. (2014) classify models based on the presence of such stability dependence of cloud fraction. They show that, except for models using Scinocca et al. (2008) parameterization (category B), CMIP models with stability dependence are characterized by an increase in cloud cover in Sc regions upon global warming. When the CAM4 Sc scheme is removed (not shown), the Sc-region LCC sensitivity becomes close to 0 (ΔCF/ΔTa=0.11 % K⁻¹ without Sc scheme and ΔCF/ΔTa=1.16 % K⁻¹ with Sc scheme) Hence, the CAM4 increase in Sc-region LCC upon warming is mainly due to the stability dependence of cloud fraction. However, the CRE response remains large without the Sc scheme, with a sensitivity ΔCRE/ΔT of about -0.71 W m⁻² K⁻¹ and -0.22 W m⁻² K⁻¹ in the Sc regions, and -0.60 W m⁻² K⁻¹ and -0.47 W m⁻² K⁻¹ at global ocean scale, with and without Sc scheme, respectively (not shown). Hence the Sc scheme contributes to the low sensitivity of CAM4 but is not the main cause of it. When fitted with the CAM4 cloud scheme, CSIRO-Mk3L doesn’t reproduce the large CRE increase seen in CAM4. Finally, these results show that a stability-sensitive Sc cloud scheme is not a sufficient condition for an LCC increase or large decrease in (negative) CRE.

The increase in LCC and decrease in CRE in the PCM (CCM3) model is reproduced by both CAM4 and CSIRO-Mk3L, when using the CCM3 cloud scheme (Figure 1a,c). When fitted with the CCM3 cloud scheme but without its Sc scheme component, the LCC change in CSIRO-Mk3L is roughly unchanged and the CRE change is even slightly smaller than with the CCM3 Sc scheme component, suggesting that the ω dependency of cloud fraction, and maybe also the diagnostic cloud water parameterization, play an important role in the low sensitivity of PCM.

Volodin (2014) attributes part the low climate sensitivity of INM-CM4 to the stability dependency of the cloud fraction formulation. In the present analysis, the INM-CM4 shows a very small Sc-region LCC changes (Figure 1a). With INM-CM4 cloud scheme, both CSIRO-Mk3L and CAM4 show a reduction in Sc-regions LCC. Thus, the stability dependency in INM-CM4 doesn’t necessary lead to a LCC increase. However, the CRE change remains large, in particular for CAM4 (Figure 1c,d and Figure 3a,b). This is apparently due to a large optical depth feedback (not shown) associated with the increasing relationship between cloud water content and temperature (Volodin, 2014). Hence the low sensitivity of INM-CM4 is likely to be due to its particular treatment of cloud water content rather than cloud cover.

Finally, the decrease in cloud cover for the Scinocca et al. (2008) cloud scheme (category B) is confirmed by CAM4 and CSIRO-Mk3L simulations (Figure 1a), but with a small magnitude for both models. The similarity to PDF schemes may be due to the fact that in this scheme stability plays a much weaker role compared to RH. Like PDF schemes, this scheme may tend to predict a positive feedback.

3. 2. Tropical and global scales

In the following, we focus on the responses at the tropical and global scales. Because of differences in experiment design used to determine LCC and CRE changes (uniform warming
in fixed SST experiments or CO₂ increase in slab or coupled experiments), and potential
differences in cloud parameters in some models over land, we focus on the responses over
ocean only (tropical ocean is defined as the regions over ocean between 30°S and 30°N). Note
however that tests with the CSIRO-Mk3L have found results to be insensitive to whether or
not the cloud scheme is modified over ocean only or over both ocean and land (not shown). For the tropics, we also focus on response in subsiding regions only, to avoid strong effects
associated with deep convection.

The trends of the LCC response with scheme type in the two testbed climate models are
similar in the subsiding tropical ocean, global ocean, and Sc regions (**Figure S2a,b and
Figure S3a,b**). However, the CRE responses differ somewhat among the two testbed climate
models and CMIP models in the subsiding tropical ocean (**Figure 3a and Figure S2**). Considering the whole tropical ocean, the spread in CRE responses is similar to that in
subsiding regions only, but differences between the mean of each testbed model ensemble and
the mean of CMIP sub-ensemble CRE responses are enhanced by about a factor of two (not
shown). The more unpredictable responses at the tropical scale compared to Sc regions may
be due to an enhanced role of shallow convection, given that convection schemes are known
to be able to influence cloud feedback. This may also be due to a role of deeper convective
events that affect CRE. The variations in tropical cloud feedback among cloud scheme within
the same category, such as category A (e.g. **Figure 3a and Figure S2a**), also suggests
interaction between the cloud scheme and other processes such as convective mixing. The
vertical profile of the critical parameter may play a role in shaping such differences in cloud
feedback.

At the global ocean scale (**Figure 3b** and **Figure S3**), the perturbed CAM4 and CSIRO-Mk3L
experiments exhibit a large spread of sensitivities in comparison with the sub-CMIP
ensemble, and with a relatively similar tendency for the feedback to decrease with ascending
scheme category. The spread of CRE changes in CAM4 and CSIRO-Mk3L ensembles is
about 93 % and 35 % of that of the sub-CMIP ensemble, respectively. These results suggest a
substantial contribution of the stratiform cloud scheme to the inter-model spread in global cloud
feedback. Note that the mean cloud fraction change at the global scale may be more difficult to
interpret due to spatial heterogeneities in cloud regimes at global scale. However, as for the
other scales, large differences are obtained between simulations with the two testbed models
and corresponding CMIP models, for some schemes. In particular, the A category covers a
large spread of sensitivities, with low sensitivity for the Smith (1990) scheme compared to the
others PDF schemes. Lastly, in the extratropical ocean, the relationship between the cloud
scheme and LCC response is similar to that of other regions (**Figure S4a,b**). However, the
CMIP models do not exhibit such a relationship for the CRE (**Figure S4c,d**). This suggests an
increasing role of other feedbacks than those related to low cloud fraction changes. Moreover,
this suggests that the better agreement between the three model sets for global-average
feedback than for that in subsiding tropical ocean regions may be partly due to compensating
errors.

3.3. Cloud scheme changes at both low and mid levels

In the experiments presented so far the cloud scheme was modified only below 750 hPa, but
we have also extended the change to 300 hPa to include both low and midlevel cloud. Altitude
300 hPa was chosen because it corresponds to the default limit between midlevel and high
level clouds in CAM4. Note that a separation at 440 hPa might be better as used by ISCCP
cloud classification. In the Sc regions, the additional effect on the cloud responses is minor in
comparison with effects via low levels only (not shown). At the tropical and global scale, including the deeper clouds tends to increase the spread in CRE changes (Figure 3c,d and Figure S5 and S6). Note that sensitivity to the cloud parameterization at levels above 300 hPa has not been investigated. Due to the FAT hypothesis (Hartmann et al., 1997) one can expect that larger quantities of cirrus would impact the feedback. Hence such simulation would necessitate a retuning of the high cloud fraction. Note that for some cloud schemes (B, C, and E1), the cloud scheme change significantly impacts the cloud fraction vertical profile, with high cloud (cirrus) cover peaking at about 300 hPa (Figure S7), which can be considered as unrealistic. For the Category B scheme, the normalized CRE change at the global scale (Figure S6,d) is large in comparison with the simulation where the cloud scheme is modified only below 750 hPa, due to a very small CRE in the mean state (Figure S8b). This points to potential limitations in the strategy of normalizing CRE responses to control-state CRE amount, since the clouds responsible for the small CRE may differ from those responsible for the warming response.

4. Discussion and conclusions

The stratiform cloud cover and cloud water content parameterizations used by a subset of CMIP models have been implemented in two testbed global atmospheric models, CAM4 and CSIRO-Mk3L. The schemes’ impact on cloud responses to global warming, in terms of LCC and CRE, has been investigated using AMIP (specified SST) simulations, and responses have been compared to those of the CMIP models using the same cloud schemes. Note that some components of these cloud schemes have not been investigated, such as convective cloud and stratiform precipitation. Moreover, the impact of cloud scheme in high cloud regions (above 300 hPa) has also not been investigated.

The ensemble of cloud schemes tested is found to produce a substantial spread of cloud feedback in comparison to that of the full CMIP ensemble (about 40 % and 65 % of the CMIP sub-ensemble for CRE changes in the Sc regions and global ocean, when varying the treatment of clouds below 750 hPa). Changing the cloud scheme can often reverse the sign of the feedback. These results suggest an important role of the cloud scheme in determining the cloud feedback of a climate model, showing in particular that cloud feedback cannot be uniquely determined by characteristics of other schemes such as shallow convection or turbulence.

More specifically, PDF schemes and others (Scinocca et al., 2008) where cloud cover is determined mainly by local relative humidity, tend to predict a decrease of low level cloud cover and an increase in (negative) CRE (hence a positive cloud radiative feedback) in Sc regions, confirming the results of Qu et al. (2014). This may be explained by a tendency of climate models to reduce subtropical RH generally (Wetherald and Manabe, 1980; Sherwood et al., 2010) in a warmer climate. However, a large spread is obtained for cloud schemes within the same category. These differences which can be due to relative differences in the vertical profile of the critical parameters or to differences in the underlying PDFs, highlight the equivalent importance of other boundary layer processes in imposing cloud feedback. In addition, at the scale of the tropics, results are less consistent, suggesting an important role of the coupling with other boundary layer parameterization in convective regions in determining the strength of the low cloud feedback. At the global ocean scale, the spread obtained in cloud responses is again closer to that obtained for the stratocumulus region, suggesting an important role of these cloud types (or the model schemes meant to represent them) for global cloud feedback.
Our results also suggest that particular cloud scheme assumptions may be sufficient, or at least necessary, to impose a negative sign of the low cloud feedback in the Sc regions. Stability dependence of cloud cover is found to play a major role in determining the LCC increase in CAM4 in the Sc regions. However, this stability dependence is not a sufficient condition for a cloud increase, as shown by the cloud reduction in CSIRO-Mk3L when fitted with this scheme. Note also that the effect of this scheme on the CRE response remains small, though not negligible, at the global scale. Hence the Sc scheme alone does not appear to explain the low sensitivity of CAM4. Similarly, in INM-CM4, the cloud water content parameterization appears to play an important role in explaining a low sensitivity, rather than stability dependency of the cloud fraction. Finally, other peculiarities of the cloud scheme, such as ω dependency, may play a determinant role in low sensitivities.

Some limitations can be pointed out. First, only two testbed models are used to perform these sensitivity experiments. Also, we did not attempt to retune the modified models, some of which may be out of radiative balance or have other mean-state errors larger than typical in CMIP (although it should be noted that CMIP5 models also have a fairly large range in mean state LCC and CRE). A second important caveat of this study is its limitation to a subset of the cloud schemes used by CMIP models. This subset represents roughly two thirds of climate models in the CMIP3 and CMIP5 ensemble. However, for practical reasons, it is biased toward the simplest cloud schemes. Investigating the role of prognostic cloud fraction schemes in the spread of cloud feedback, would be of particular interest but is more challenging.

Finally, our results confirm that the cloud scheme alone does not impose the feedback strength in a climate model, leaving a significant role for other parameterizations such as the schemes directly affecting shallow convection (e.g. Zhang et al., 2012; Gettelman et al., 2012; Sherwood et al., 2014). In this context, the fact that CSIRO-Mk3L is less sensitive to variations in the cloud scheme than is CAM4, may be primarily due to the lack of a shallow convection scheme in the CSIRO-Mk3L model. More generally, the impact of changing a cloud scheme may be sensitive to the alignment between the location where it predicts clouds and where other processes such as shallow convective mixing exert their strongest influence, rather than the formulation inherent to the cloud scheme itself. This suggests the importance of developing cloud schemes and other boundary layer parameterizations in a consistent way.

Acknowledgments

We thank two anonymous reviewers for their careful reading of the manuscript and their insightful comments and suggestions. We gratefully thank the NCAR Community Earth System Model team for making CAM4 and CCSM3 climate models code available. We thank S. Phipps for assistance concerning CSIRO-Mk3L climate model. We also thanks the Canadian Centre for Climate Modelling and Analysis and Jason Cole for providing details of the cloud scheme of CGCM3 climate model, and Lijuan Li and Qing Bao, for information on FGOALS-s2 and FGOALS-g2 cloud schemes. Thanks are also due to Mark Webb, Andrew Gettelman, Alejandro Di Luca for discussions on this topic. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison which provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank the climate modeling groups for producing and making available their model
outputs. The CMIP data are available at http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html. This work was supported by ARC Grant DP140101104.

Appendix: stratiform cloud schemes description and implementations details

A. Category A

The A category encompasses schemes that assume a probability-density function (PDF) for the sub-grid distribution of the moisture. These schemes are the most common type used in the CMIP3 and CMIP5 ensembles. The cloud fraction CF and the in-cloud water content q_{incl}' read, respectively (Smith, 1990; Le Treut and Li, 1991; Bony and Emanuel, 2001):

$CF = \int_{q_s}^{\infty} P(q_t')dq_t'$

$q_{incl}' = \int_{q_s}^{\infty} q_t' P(q_t')dq_t'$

where P is the probability density function of the subgrid total water content q_t' and q_s is the saturation water vapor content. Note that in these schemes, the cloud fraction can equivalently be written as a function of RH only. The cloud water content is a function of RH and total water.

In the literature, schemes differ in particular in the assumed PDF. Here we consider three subclasses referred to as categories A1, A2 and A3:

- Category A1 refers to the Smith (1990) scheme (hereafter S90). The PDF is assumed to be a triangular function. The parameter of the scheme is a critical relative humidity RH_0 above which water vapor is assumed to condense. This parameter is set to CSIRO-Mk3L values ($RH_0 = \text{max}(0.85, \sigma)$, where σ is the scaled pressure level. Note also that in the CSIRO-Mk3L, the threshold relative humidity varies in convective regions between cloud base and cloud top.

- Category A2 refers to the Le Treut and Li (1991) scheme (hereafter LL91). The PDF is assumed to be a uniform function. The parameter of the scheme, referred to as γ in LL91, is related the width of the distribution to the total water content. It is set to LL91 value ($\gamma = 0.2$).

- Category A3 refers to the Bony and Emanuel (2001) scheme (hereafter BE01). The PDF is assumed to be a Gaussian function. The parameter r_0 of the model relates the standard deviation of the distribution to the total water content. It is assumed to vary linearly with pressure between the surface and 300 hPa, with $r_0 = 0.95$ at surface and $r_0 = 0.33$ at 300 hPa, following Hourdin et al. (2004).

In S90 and LL91, the saturation water vapor content is diagnosed from the liquid temperature $T_l = T - L_v q_{ice} - L_f q_{ice}$, where q_{ice} is ice water content and L_v and L_f are latent heat of vaporization and latent heat of fusion, respectively). In BE01, the saturation water vapor content is diagnosed from temperature.

In some climate model cloud schemes such as that of CSIRO-Mk3L, the cloud water content is a prognostic variable, following Rotstayan (1997), but the scheme remains a diagnostic scheme in the sense that cloud water in not used in the calculation of cloud variables.
B. Category B

The B category refers to the scheme implemented in CGCM3 model and mainly described in Scinocca et al. (2008).

B.1. Cloud fraction

The cloud fraction reads:

\[CF = \frac{\bar{CF}(1 + \Lambda)}{(1 + \bar{CF}A)} \]

where

\[\bar{CF} = R \frac{R + A}{1 + A}, \]

\[R = \begin{cases}
\frac{RH - RH_0}{1 - RH_0}, & RH > RH_0 \\
0, & RH \leq RH_0
\end{cases} \]

and where the so-called conditional stability parameter \(\Lambda \) is given by:

\[\Lambda = \begin{cases}
0, & \Gamma \leq \Gamma_s \\
\left(\frac{\Gamma - \Gamma_s}{\Gamma_s} \right)^2, & \Gamma > \Gamma_s
\end{cases} \]

where \(\Gamma \) is the local potential temperature lapse rate and \(\Gamma_s \) is the moist adiabatic lapse rate. The threshold relative humidity \(RH_0 \) is a function of the conditional stability parameter:

\[RH_0 = \frac{RH_0^1 + RH_0^2 \Lambda}{1 + \Lambda} \]

with \(RH_0^1 = 0.95 \) and \(RH_0^2 = 0.87 \) for liquid water and \(RH_0 = 0.75 \) for ice water.

B.2. Cloud water content

The in-cloud water content is assumed to be proportional to the adiabatic water content of an air parcel lifted through a small vertical displacement, following Betts and Harshvardhan (1987) and McFarlane et al. (1992):

\[q_{\text{w} \text{id}} = (C_p T/L_v \theta) \Gamma_s \rho_{\text{air}} g \Delta z \]

Where \(g \) is gravity, \(\rho_{\text{air}} \) is density of dry air, \(\Delta z = \min (150 \frac{(1 + A)}{A}, \Delta z_{\text{grid}}) \) for liquid water and \(\Delta z = \min (60, \Delta z_{\text{grid}}) \) for ice water and \(\Delta z_{\text{grid}} \) is the depth of the grid box. In addition the ice water content is rescaled by \((1 + \bar{CF}A)/(1 + A) \) (note that in CGCM3, this rescaling is applied to the ice water path used in radiative calculation).

C. Category C

The C category refers to the cloud scheme implemented in INM-CM4 model and described in Volodin et al. (2014).
\section*{C.1. Cloud fraction}

The cloud fraction is a linear function of RH with the parameters depending on local stability:

\[CF = a \cdot RH + b, \]

where \(a \) and \(b \) are set to values given by Volodin et al. (2014) above ocean: \(a = 10 \) and \(b = -9 \) for \(\partial T / \partial z > -0.001 \) K/m, \(a = 18.18 \) and \(b = -17.91 \) for \(\partial T / \partial z \leq -0.007 \) K/m, and \(a \) and \(b \) are linear functions of \(\partial T / \partial z \) for \(-0.007 \leq \partial T / \partial z \leq -0.001\).

\section*{C.2. Cloud water content}

The in-cloud water content is expressed as a function of temperature:

\[q_{\text{in, cl}} = \frac{1}{1000 \rho_{\text{air}}} \times 10^{-1.03739 + 0.03130 \times (T - 273.15)}. \]

\section*{D. Category D}

The D category refer to the cloud scheme originally incorporated in CAM3 or CAM4, and described in Neale et al. (2010). The CAM4 source code is available at http://www.cesm.ucar.edu/models/ccsm4.0/cam/.

\subsection*{D.1. Cloud fraction}

Cloud fraction is expressed as the maximum of a cloud fraction depending on RH, \(CF_{\text{RH}} \), and a cloud fraction given by a Sc scheme, \(CF_{\text{Sc}} \):

\[CF_{\text{RH}} = \left(\frac{R_{\text{H}} - R_{\text{H}}}{1 - R_{\text{H}}} \right)^2, \]

where \(R_{\text{H}} \) is equal to 0.80 above 750 hPa, and to 0.91 and 0.81 below 750 hPa, over ocean and land, respectively. Note that the relative humidity is adjusted with the convective cloud fraction \(CF_{\text{conv}} \): \(R'_{\text{H}} = R(1 - CF_{\text{conv}})/(1 - CF_{\text{conv}}) \). The cloud fraction \(CF_{\text{Sc}} \) is given by a generalization of the scheme introduced by Slingo (1987) scheme and is expressed as a linear function of the lower tropospheric stability LTS and is bounded by the maximum of the relative humidity of the considered grid box and that of the underlying grid box \(RH_{k,k-1} \):

\[CF_{\text{Sc}} = \min \left(0.057 \cdot \text{LTS} + 0.5573, RH_{k,k-1} \right). \]

The cloud is assumed to be located where the stability jump is the strongest and whether it exceeds 0.125 K hPa\(^{-1}\).

\subsection*{D.2. Cloud water content}

The cloud water content follows a prognostic scheme from which a full description is provided in Neale et al. (2010). The cloud water condensation/evaporation rate is written as a linear function of the rain evaporation rate, and the temperature, the water vapour and the cloud water tendencies, with the parameters depending on cloud fraction, thermodynamical variables, and in-cloud water content. For practical reasons, the term depending on the
precipitation evaporation rate \(c_r \) in Eq. 4.137 in Neale et al., 2010) is neglected for implementation in CSIRO-Mk3L (note that no sensitivity has been found to this term for CAM4 simulations).

E. Category E

E.1. Cloud fraction

The E1 category refers to the scheme of CCM3. It is described in Kiehl et al (1996) and CCM3.6.16 source code is available at http://www.cgd.ucar.edu/cms/ccm3/source.shtml.

Below 750 hPa, and if no stratocumulus is diagnosed, the cloud fraction is a function of both vertical velocity and relative humidity:

\[
CF = \begin{cases}
0 & \omega \geq \omega_c \\
\frac{\omega - \omega_c}{\omega_c} \left(\frac{RH - RH_0}{1 - RH_0} \right)^2 & 0 \leq \omega < \omega_c \\
\frac{\left(RH - RH_0 \right)^2}{1 - RH_0} & \omega < 0
\end{cases}
\] (Eq. A1)

With \(\omega_c = 50 \text{ mb/day} \), and \(RH_0 \) equal to 0.90 and 0.80 over ocean and over land, respectively. Note that \(RH \) is used for implementation in CSIRO-Mk3L. Note that in CCM3 scheme, \(RH \) is an adjusted large scale relative humidity.

In addition, category E1 incorporates a Sc scheme following Slingo (1987). Where \(-d\theta dp\) is maximum in the column boundary layer (below 750hPa and above 900 hPa), and exceeds 0.125 K/hPa, the cloud fraction is expressed as a function of stability:

\[
CF = \begin{cases}
0 & RH_{k-1} < 0.6 \\
-6.67 \left(\frac{\partial \theta}{\partial p} - 0.667 \right) \left(1 - \frac{0.9 - RH_{k-1}}{0.3} \right) \left(P - 750 \right) & 0.6 \leq RH_{k-1} < 0.9 \\
\left(-6.67 \frac{\partial \theta}{\partial p} - 0.667 \right) \left(P - 750 \right) & 0.9 \leq RH_{k-1}
\end{cases}
\]

Where \(RH_{k-1} \) is relative humidity of the underlying grid box.

Above 750 hPa, cloud fraction follows:

\[
CF = \left(\frac{RH - RH_0}{1 - RH_0} \right)^2
\]

where \(RH_0 \) is expressed as a function of the square of the Brunt-Väisälä frequency \(N^2 \):

\[
RH_0 = 0.999 - 0.1 \left(1 - \frac{N^2}{3.5 \cdot 10^{-4}} \right)
\]

Category E2 refers to the scheme implemented in FGOALS-s2 (Bao et al., 2013). The cloud fraction formulation follows Eq. A1 (Liu et al., 1998; Bao et al., 2013), with \(RH_0=0.85 \) at low
levels and $RH_0=0.78$ at mid levels (Q. Bao personal communication). FGOALS-s2 also has a Sc scheme (Fushan et al., 2005) that was not implemented in CSIRO-Mk3L and CAM4.

E.2. Cloud water content

In CCM3 (category E1) the cloud water path used by the radiative transfer model is diagnosed from vertically integrated water vapor mixing ratio, while precipitation is diagnosed from a different formulation based on an “all or nothing” scheme assuming all condensed water precipitates. Here, the formulation used for the cloud water path, input to the radiative code, is also used to diagnose precipitation. Following this formulation, the cloud liquid water content reads (Kiehl et al., 1996):

$$q_{cl}^{in} = 250 \cdot 10^{-6} \frac{1}{\rho_{air}} h_l (e^{-z_{k-0.5}/h_l} - e^{-z_{k+0.5}/h_l})/(z_{k+0.5} - z_{k-0.5}),$$

where $h_l = 700 \cdot \ln (1 + 1/g \int_{p_{top}}^{p_{surf}} q(p) dp)$ and $z_{k-0.5}$ and $z_{k+0.5}$ are the heights on the k^{th} layer interfaces.

In FGOALS-s2 (category E2) the cloud water content is formulated following Xu and Randall (1996). Here it is written following Eq. 1 of Xu and Randall (1996):

$$q_{cl}^{in} = -10^{-4} \ln (1 - CF/RH^{0.5}).$$
References

Volodin, E.M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations, Izvestiya, Atmospheric and Oceanic Physics 46.4, 414-431.

Table 1: Summary of the climate models used in this study, their statiform cloud scheme type and the type of simulations used to estimate their cloud responses

<table>
<thead>
<tr>
<th>Model</th>
<th>CMIP</th>
<th>Cloud scheme</th>
<th>Model and cloud scheme references</th>
<th>Responses estimated from</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS1-3</td>
<td>5</td>
<td>A1</td>
<td>Martin et al. (2011), Smith (1990)</td>
<td>abrupt4xCO2 (regression)</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>5</td>
<td>A1</td>
<td>Martin et al. (2011), Smith (1990)</td>
<td>AMIP, AMIP4K</td>
</tr>
<tr>
<td>CSIRO-Mk3.6.0</td>
<td>5</td>
<td>A1</td>
<td>Rotstayn et al. (2010), Rotstayn (1997), Smith (1990)</td>
<td>abrupt4xCO2 (regression)</td>
</tr>
<tr>
<td>MIROC-ESM</td>
<td>5</td>
<td>A2</td>
<td>Watanabe et al. (2011), Le Treut and Li (1991)</td>
<td>abrupt4xCO2 (regression)</td>
</tr>
<tr>
<td>IPSL-CMA-LR</td>
<td>5</td>
<td>A3</td>
<td>Dufresne et al. (2013), Hourdin et al. (2006), Bony and Emanuel (2001)</td>
<td>AMIP, AMIP4K</td>
</tr>
<tr>
<td>CGCM3</td>
<td>3</td>
<td>B</td>
<td>Scinocca et al. (2008), McFarlane et al. (1992)</td>
<td>slabcntl, 2xco2</td>
</tr>
<tr>
<td>INM-CM4</td>
<td>5</td>
<td>C</td>
<td>Volodin et al. (2010), Volodin (2014)</td>
<td>abrupt4xCO2 (regression)</td>
</tr>
<tr>
<td>BCC-CSM1-1</td>
<td>5</td>
<td>D</td>
<td>Wu et al. (2010), Neale et al. (2010)</td>
<td>AMIP, AMIP4K</td>
</tr>
<tr>
<td>CAM4</td>
<td>5</td>
<td>D</td>
<td>Neale et al. (2010)</td>
<td>AMIP, AMIP4K</td>
</tr>
<tr>
<td>FGOALS-g2</td>
<td>5</td>
<td>D</td>
<td>Li et al. (2013), Neale et al. (2010)</td>
<td>abrupt4xCO2</td>
</tr>
<tr>
<td>NorESM1-M</td>
<td>5</td>
<td>D</td>
<td>Bentsen et al. (2012), Neale et al. (2010)</td>
<td>AMIP, AMIP4K</td>
</tr>
<tr>
<td>PCM1</td>
<td>3</td>
<td>E1</td>
<td>Washington et al. (2000), Kiehl et al. (1996)</td>
<td>1pceto2xCO2 (last minus first years)</td>
</tr>
<tr>
<td>FGOALS-s2</td>
<td>5</td>
<td>E2</td>
<td>Bao et al. (2013), Liu et al. (1998), Fushan et al. (2005), Xu and Randall (1996)</td>
<td>abrupt4xCO2 (regression)</td>
</tr>
</tbody>
</table>
Figure 1
Response per unit of warming in the stratocumulus (Sc) regions for a) cloud fraction, b) normalized cloud fraction, c) CRE, d) normalized CRE (y-axis), for the models summarized in Table 1, ranked per microphysical scheme type (x-axis). The symbols also denote the type of cloud scheme used in the model: A (circle: A1, cross: A2, star: A3), B (diamond), C (downward triangle), D (upward triangle), E (square: E1, circle: E2). Black symbols denote CMIP models. Red and blue symbols denote simulations with CAM4 and CSIRO-Mk3L, respectively, in which the cloud schemes have been modified at low levels only (below 750 hPa), to match the corresponding scheme category. Note that cloud scheme E2 is not fully implemented and is represented by open circle. For both CAM4 and CSIRO-Mk3L, the default simulation with their original scheme is shown by a horizontal dashed line of the corresponding color. The right part of each plot shows the mean (μ) and two standard deviation (σ) of the CMIP, the CSIRO-Mk3L and the CAM4 ensemble.
Figure 2
Mean vertical profile over the Sc regions of cloud fraction (left) and cloud fraction change per unit of surface air warming (right) for the category A-B scheme in CAM4 (first row), category C-E scheme in CAM4 (second row), category A-B scheme in CSIRO-Mk3L (third row), category C-E scheme in CSIRO-Mk3L (fourth row). Symbols are the same as in Figure 1.
Figure 3
Same as Figure 1c, for the subsiding tropical (30°S-30°N) ocean (left) and the global ocean (right), with cloud scheme modified only at low levels (top panels) and at both low and mid levels (bottom panels)