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Abstract We give an overview of the practice of developing and using complex
climate models, as seen from experiences in a major climate modelling center and
through participation in the Coupled Model Intercomparison Project (CMIP). We dis-
cuss the construction and calibration of models; their evaluation, especially through
use of out-of-sample tests; and their exploitation in multi-model ensembles to iden-
tify biases and make predictions. We stress that adequacy or utility of climate models
is best assessed via their skill against more naı̈ve predictions. The framework we
use for making inferences about reality using simulations is naturally Bayesian (in
an informal sense), and has many points of contact with more familiar examples of
scientific epistemology. While the use of complex simulations in science is a develop-
ment that changes much in how science is done in practice, we argue that the concepts
being applied fit very much into traditional practices of the scientific method, albeit
those more often associated with laboratory work.

Keywords Climate models · Complex simulation · Model skill

1 Introduction

The 2013 Nobel Prize for Chemistry was given to three pioneers of complex multi-
scale chemistry simulations. The chair of the Prize Committee, in explaining the
award stated that “Chemistry is an experimental science” but that “Theory is the new
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experimentation” (Lidin 2013). This claim of novelty in the use of complex simu-
lation in science is a common one even among Nobel prize winners. For instance,
von Hayek (1974) contrasted the new need for complex simulation in economics to
discover its emergent properties with the “simplicity” (in his view) of the physical sci-
ences. In the broader literature, describing simulation as the “third pillar” of scientific
enquiry (alongside theory and experimentation) is a commonplace (e.g. President’s
Information Technology Advisory Committee (PITAC) 2005):

Computational science now constitutes what many call the third pillar of the
scientific enterprise, a peer alongside theory and physical experimentation.

There are also many counter-claims that “Science only has two legs” (e.g. Vardi
2010):

What has changed is the scale of computation. While once carried out by hand,
computation has required over time more advanced machinery. Doing theory
today requires highly sophisticated computational-science techniques carried
out on cutting-edge high-performance computers.

So science is still carried out as an ongoing interplay between theory and
experimentation. The complexity of both, however, has increased to such a
degree that they cannot be carried out without computation. There is no need,
therefore, to attach new legs to science. It is doing fine with two legs. At the
same time, computational thinking (a phrase coined by Jeannette Wing) thor-
oughly pervades both legs. Computation is the universal enabler of science,
supporting both theory and experimentation. Today the two legs of science are
thoroughly computational!

Others have described complex simulations as only engaging “the same old
stew” of standard epistemological questions (Frigg and Reiss 2009). In response,
Humphreys (2009) outlined four specific issues that, in his view, make complex sim-
ulations stand out from other kinds of science: 1) the difficulty in understanding why
a simulation produces the results that it does from the theory it encodes (“epistemic
opacity”), 2) the intertwining of semantic and syntactic variations in applying the
model to its target system, 3) the time iterative nature of most simulations, and 4)
the unavoidable difference between what is doable in principle, and what is doable
in practice. Humphreys claims that each of these four issues are grounded in the idea
that simulations require an epistemology in which human actions are no longer cen-
tral. Specifically, he feels that simulations create a hybrid situation where human and
computers share epistemic authority.

We aim to illuminate these issues with an examination of the practice of climate
modelling. Climate is an important example of a complex system where large-scale
simulations are used to assess the implications of a set of known or plausible rela-
tionships governing the system (Heymann 2010; Lloyd 2010; Parker 2013a). Such
simulations can reveal a range of emergent properties, responses of the system to
altered initial or boundary conditions, or characteristics of the internal dynamics of
the system itself. As described eloquently in Edwards (2010), simulation has become
pervasive in the technical literature and public discussion of climate science. The
reasons for this prominence are both practical and rational. First, climate models,
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while imperfect, work well in many respects (that is to say, they provide useful skill
over and above simpler methods for making predictions). Second, many vital and
interesting questions are intractable without recourse to comprehensive simulations.
Despite this, many outside (and even some within) the climate science community
are unaware of how climate models are built, used, and evaluated,1 and there is a lot
of naı̈ve commentary on their utility for predicting future or attributing past climate
change. This is unfortunate, as these matters must be understood in order to resolve
practical questions such as to how climate models should be used to learn about the
real world (e.g. Frame et al. 2007). This issue is only becoming more acute as more
models are developed and more simulations are being performed (Taylor et al. 2012).

In this paper, we will explore specifically to what extent complex simulation in
climate science is a new “pillar” of inquiry as opposed to an expansion or cross-
fertilization of existing notions of theory and experiment (Winsberg 2003; Lloyd
2010) from the point of view of model developers and users of the simulations.
We also discuss classical scientific notions such as falsifiability, confirmation and
reproducibility in the climate modelling context. These concepts have been widely
challenged in more general terms, but the practice of climate modelling perhaps pro-
vides some novel examples of why naı̈ve application of these notions is problematic
while more nuanced variations are still applicable.

At least one reason we need models is very clear (Knutson and Tuleya 2005):

If we had observations of the future, we obviously would trust them more than
models, but unfortunately observations of the future are not available at this
time.

Given this requirement, there is a need for methodologies to assess the utility and
credibility of model projections and determine how to use them appropriately in
making predictions (Lloyd 2010; Katzav et al. 2012; Katzav 2014). Additionally, sci-
entific work, for example the development of heuristic models or understanding of
the climate system, also frequently benefits from the predictions by complex mod-
els of variables that cannot be observed due to technical limitations. Finally, models
can be used to address counterfactual questions, such as what today’s climate would
have been like without human interference; such uses enable conclusions to be drawn
about the causes (or change in probability) of events that could not be inferred from
observations alone.

In the following we will restrict discussion to the class of model most often
described as a “General Circulation Model,” or GCM. The methods by which cli-
mate models (GCMs) are developed, evaluated and used influence the methodology
by which useful predictions can be made; these methods are briefly described in
Section 2. Section 3 describes the process of evaluating a single model, and Section 4,
the added utility of multi-model ensembles. The final section attempts to relate some
issues in the actual practice of climate modelling to current discussions found in the
philosophy of science literature.

1We use the term ’evaluated’ in this paper (for assessing the adequacy of the model for a certain task) over
’validated’ since the latter term has connotations of ’truth’, which is of limited relevance here.
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Following conventions in the climate sciences, we use the term “model” to refer
to the actual computer code or, equivalently, the (discretised) equations and assump-
tions it encodes; “simulation” to refer to a single run of the code (within a particular
computational environment, and with specific initial and boundary conditions); and
“projection” to indicate a prediction of a future trajectory of the climate that is con-
tingent upon a specific scenario of future boundary conditions. A model simulation
consists of running the model itself combined with some initial conditions and a set
of drivers (boundary conditions or externally specified fields) that are either transient
(changing in time) or static (yielding a “time-slice experiment”). These initial con-
ditions and drivers have the role of auxiliary hypotheses in the Duhem/Quine sense
(Stanford 2013) since they are themselves uncertain approximations to the real world
conditions. Evaluation of a simulation (or often, an ensemble of simulations) is there-
fore a test of all the components (model physics, parameterisations, and auxiliaries)
at once (Lenhard and Winsberg 2010).

2 Climate model development

We distinguish three classes of components of a climate model: well-accepted first
principles (conservation of mass, energy etc.), approximations to well-understood
physics, and empirical, phenomenological, “parameterisations” of unresolved pro-
cesses. The need for approximations and parameterisations arises from limits on
computer resources, and the impossibility of capturing all scales and phenomena of
interest (from the planetary to that of an individual photon) on a quasi-uniform grid of
points. The essential difference between these two classes is that, for approximations,
an exact (or very accurate) theory is available, but would be far too computationally
expensive to fully incorporate into the climate model; examples include atmospheric
radiative transfer and the dynamical equations for fluid flow. For empirical parame-
terisations, needed in particular for turbulent processes, no adequate general theory
exists.

The importance of parameterisations in climate modelling arises from the evi-
dent sensitivity of model behaviour at larger scales to the way that sub-gridscale
phenomena (such as cloud droplet formation or surface turbulence) are represented.
Parameterisations are also sometimes needed to represent the net effect of a pro-
cess intentionally omitted from a model—for example the input of stratospheric
water vapour via the oxidation of methane in models that don’t include atmospheric
chemistry. The use of parameterisations implies that climate models are not approx-
imations to an accurately known but analytically intractable “theory of climate,” but
rather are distinct, alternative, composite hypotheses about climate that depend fun-
damentally on the specific resolution (the spatial or temporal scales at which proceses
are truncated) and scope.

Model development consists mainly of improving the fidelity and/or computa-
tional efficiency of approximations, increasing the scope of models and processes
they incorporate, and seeking more successful parameterisations (or indeed, replac-
ing parameterisations with explicit representations). Atmospheric convection and
cloud-related parameterisations continue to command scientists’ attention and all
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extant examples still have substantial room for improvement (Knutti et al. 2013).
Recent increases in climate model scope include the explicit prediction of aerosols
and atmospheric chemistry, dynamic vegetation, and more complete representations
of the carbon cycle. Model processes are sometimes made more elaborate so as to
include previously ignored effects, such as mesoscale circulations (those larger than a
cloud but smaller than a synoptic weather system or model grid cell) or microphysical
effects of aerosols on cumulus clouds. The suitability of approximations (e.g. radia-
tive transfer) can be tested “off-line” in situations where (nearly) exact solutions are
available. Unfortunately this type of test is generally impossible or inconclusive for
parameterisations, for which the principal test is typically the emergent performance
of the climate model in which they are embedded.

An often overlooked aspect of model development is the work needed to pro-
duce inputs or boundary conditions—such as aerosol emissions, land characteristics
and orography, and solar variations—and to produce datasets for diagnostic evalua-
tions. These are constantly updated (as more data comes in, errors are corrected, and
assumptions employed in their construction reevaluated). Simulation errors are some-
times due to poorly specified inputs or boundary conditions rather than errors in the
model physics itself, and this may be especially relevant in paleo-climate simulations.

Once put together, a climate model typically has a handful of loosely-constrained
parameters that can in practice be used to calibrate a few key emergent properties of
the resulting simulations. In principle there may be a large number of such parame-
ters that could potentially be tuned if one wanted to compare a very large ensemble
of simulations (e.g. Stainforth et al. 2005), but this cumbersome exercise is rarely
done operationally. The tuning or calibration effort seeks to minimise errors in key
properties which would usually include the top-of-the-atmosphere radiative balance,
mean surface temperature, and/or mean zonal wind speeds in the main atmospheric
jets (Schmidt et al. 2014b; Mauritsen et al. 2012). In our experience however tuning
parameters provide remarkably little leverage in improving overall model skill once
a reasonable part of parameter space has been identified. Improvements in one field
are usually accompanied by degradation in others, and the final choice of parameter
involves judgments about the relative importance of different aspects of the simula-
tions (for example, Australia uses a version of the UK Met Office atmosphere model
but has made small modifications to mitigate problems in the Tropics and southern
hemisphere that affect Australian forecasts, at the possible expense of performance
in the UK Bi et al. 2013). Many recognizable aspects of model simulations remain
similar across model generations, indicating that these aspects are robust to changes
in the model including how it is calibrated (Masson and Knutti 2011). Specifically,
many of the most persistent model biases are surprisingly resistent to tuning.

The decisions on what to tune, and especially what to tune for, involve value judg-
ments (see also K. Intemann, “Values in Climate Models: The Good, The Bad, and
the Ugly”, submitted). This is notably more acute for complex simulations than it
would be for a numerical calculation of the consequences of a well-specified theory,
which has far fewer degrees of freedom in how such a calculation should be done.

There are claims that “social” values associated with the inductive risks associ-
ated with errors in climate model applications must play a role in model development
(Winsberg 2012; Douglas 2000). However, this has been persuasively challenged by
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Parker (2013b), who correctly points out that just because judgments are made does
not mean they are related to specific outcomes in applications or the likelihoods of
under or over-estimating sensitivities. Other authors (Betz 2013) have gone to the
opposite extreme in claiming that model construction can be ’value free’ at least in
a limited sense. Our experience is that values that are not purely epistemological do
play a role in model development, but that they are not the social values associated
with risk preferences that Winsberg or Douglas discuss. Instead these values are usu-
ally either aesthetic (e.g. elegance) or practical (tractability/ease of implementation,
alignment with group research priorities).

Winsberg and Douglas suggest that, if given a choice between two different param-
eterisations with similar overall contributions to model skill, a modeller might choose
one that yields predictions that might err in a specific way, for instance, producing
under- or over-estimates of some feature matching their prior preference for avoid-
ing false negatives over false positives. However, there are several reasons why such
suggestions can be dismissed. First, it would require enormous study and expense to
work out how to configure a model to produce preferred predictions (or predictions
with a preferred sign of error), with little evident benefit to the modelling group, and
enormous risks to their credibility if it became known that they had done so (which
would be hard to avoid given the expense). The status of climate simulations in the
public policy environment is already highly contested, and scientific credibility of
the climate model development process is a frequent topic of debate. Second, models
are now used to predict so many things under a wide range of applications that it is
hard to imagine a modelling group or individual modeller settling on one particular
outcome (or bias) to aim for, given the (indeterminate) impact this would inevitably
have on other predictions. Third and most importantly, this activity would interfere
and compete with the far stronger imperative to achieve the best skill possible against
observable metrics in today’s (or past) climate, based on modelling decisions that are
scientifically and practically defensible. Specifically, the effort required to assess the
varying sensitivity of the model to multiple drivers as a function of the two paramter-
isations would be much better spent varying the parameterisations more finely and
assessing improvements to climatological skill.

There is, on the other hand, a danger in groups “overfitting” their models to known
climate changes in historical times. Empirically, there is a suggestion from 20th Cen-
tury simulations performed by different groups for CMIP3 that choices of imposed
aerosol radiative effects compensated for their different climate sensitivities, min-
imizing the range of temperature trends (Kiehl 2007), though this pattern is less
apparent in CMIP5 (Knutti 2008; Forster et al. 2013). Estimates of historical changes
additionally are not guaranteed to be stable over time, and so tuning to their variabil-
ity would imply fitting to some non-climatic artifact. An example might be the trends
in ocean heat content first assessed by Levitus et al. (2000), but signficantly revised
in more recent compilations after bias corrections (Church et al. 2011). Nonetheless,
the minor latitude that modellers have in selecting boundary conditions requires some
consideration and may need to be taken into account to avoid overweighting success
of the “model package”.
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Tuning is perhaps best examined through an example. Biases in sea ice simula-
tions are often very different in the Arctic and the Antarctic regions. This occurs
because of the different environments (closed basin vs. open ocean, convergent flow
vs. divergent flow, dominance of snow accumulation vs. basal ice formation, etc.)
that make certain aspects of the simulation differently sensitive to the ocean heat flux
or atmospheric circulation errors in each hemisphere. Despite the temptation to inde-
pendently tune each hemisphere (by having regionally dependent parameters), this is
not generally done since enforcing the global coherence of physical processes is a
strong imperative. Parameters are instead chosen to do the best collective job across
both hemispheres. Furthermore, there is a physical understanding and empirical evi-
dence that the sensitivity of the Arctic sea ice is a strong function of the control run
climatology (that is to say that a simulation that starts off with less ice than aver-
age will be more sensitive to perturbations than one with more). This implies that
attempts to tune for a specific response may well negatively affect the control cli-
mate, which may lead to the simulation being too unrealistic to be weighted strongly
in any projection (Massonnet et al. 2012).

Nonetheless, judgments must be made in the development process. Because of
the limited personnel and time available, different groups tend to prioritize different
aspects of the model simulations. Thus a modelling group with a strong interest in
Arctic sea ice might set parameters to get the best possible estimate of the seasonal
sea ice extent, while another might instead try to maximise the fidelity of the El-
Niño/Southern Oscillation (ENSO) and its regional impacts. Given the expense and
difficulty in running multiple transient simulations, it is rare for any tuning to be done
to match trends or transient responses to external stimuli (like volcanic eruptions for
instance). Indeed, some modelling groups (Schmidt et al. 2014b) eschew tuning to
trends altogether in order to retain the possibility of using trends as an evaluation of
model skill.

Arctic sea ice trends provide an instructive example. The hindcast estimates of
recent trends were much improved in CMIP5 compared to CMIP3 (Stroeve et al.
2012). This is very likely because the observation/model mismatch in trends in
CMIP3 (Stroeve et al. 2007) lead developers to re-examine the physics and code
related to Arctic sea ice to identify missing processes or numerical problems (for
instance, as described in Schmidt et al. 2014b). An alternate suggestion that model
groups specifically tuned for trends in Arctic sea ice at the expense of global mean
temperatures (Swanson 2013) is not in accord with the practice of any of the mod-
elling groups with which we are familiar, and would be unlikely to work as discussed
above.

3 Evaluation

Models are evaluated by several different types of practitioner, each focusing on
somewhat different simulation characteristics. For a model developer, evaluation
is important for assessing targets and strategies for model improvement. Thus, a
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characteristic that happens to be strongly controlled by a specific, uncertain model
process may be particularly valuable regardless of its direct societal relevance (see
Kim et al. 2012 for an example associated with tropical intraseasonal variability). For
a model user, on the other hand, evaluation is most often concerned with determining
model adequacy for a particular scientific question, for example prediction in a par-
ticular region, or of a particular phenomenon. Such users may therefore care whether
the model’s present-day climatology and variability are accurate in that region, or
for that phenomenon, on the basis of an assumption that if behaviour there is poorly
simulated today then simulations of local change are also less trustworthy. Users
are most often focused on assessing emergent properties that have some real-world
consequence or impact.

Common general evaluations often use well-characterised global climatologies
(relatively long term averages) for temperature, precipitation, humidity etc. Reichler
and Kim (2008) and Knutti et al. (2013). These are all emergent properties—they
depend on the interaction of (in principle) all parts of the model and auxiliary
hypotheses. Thus while model-observation mismatches can be clear (for instance
ocean temperatures too warm off the coast of Peru), and the reasons understood at
some level (e.g., insufficient marine stratus cloud in coastal upwelling zones), it is
often not clear how to change the model to improve the situation. Although these
errors may downgrade our assessed reliability of the model’s predicted change in the
region, we don’t really know ahead of time whether, or how, whatever is causing the
biases in the region will also affect the response to a change in boundary conditions
or forcings. In practice, this needs to be examined by looking at multiple simulations
(across multiple models or versions) to see whether there is any substantial relation-
ship between the bias and the sensitivity of any particular feature (for instance as in
Hall and Qu (2006)).

Poor skill in any of these metrics does not lead modellers to abandon the models,
but rather to search for missing physics (such as the role of heterogenous chem-
istry on polar stratospheric clouds), improvements to misspecified parameterisations,
and—perhaps most importantly—particular aspects of the complex system for which
our current understanding does appear sufficient to make confident explanations and
predictions.

Several factors further complicate model evaluation. One is that the most impor-
tant variables in a model are often not well observed. For example, models have long
been thought to overpredict global mean precipitation but newer observational esti-
mates are much closer to that simulated (Stephens et al. 2012). When comparing
satellite records to simulations, it is often necessary to embed code to simulate what
a satellite would directly measure according to the model, rather than trying to infer
climate variables from satellite radiances (Cesana and Chepfer 2012; Webb et al.
2001; Bodas-Salcedo et al. 2011). A similar situation holds for paleo-climate proxies
such as water isotopes (Schmidt et al. 2007) or tree rings (Evans et al. 2013).

A second complicating factor is the chaotic nature of the real climate system. In
all climate models the specific transient evolution of the simulation is sensitively
dependent to tiny variations in the initial conditions (Deser et al. 2012). An ensemble
of simulations from a model is typically necessary to determine whether an obser-
vation is consistent with the model spread or not, and even then, a singular result
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could always be related to an extreme (but unsampled) outlier. A free-running cou-
pled climate model simulation initialised with 1850 conditions should not be thought
deficient for failing to produce a record magnitude El Niño event in 1997/98, even
though the model-observation mismatch might be large. If an ensemble of observed
cases is also available (say for weather forecasting), a more precise evaluation of the
coherence of the two ensembles becomes possible. Unfortunately for some of the
most interesting predictions, such as centennial-scale trends, only a single realization
of the real world may have been adequately observed.

It is incumbent upon those who develop models to know how they have (and have
not) been tuned, in order to avoid inappropriate conclusions from successful tests,
though the literature has historically been a little opaque on this topic. Though per-
haps an obvious point, characteristics (or metrics) that are used to explicitly tune a
model or its inputs should not also be used to evaluating the model - this would be
a form of ’double counting’. A recent paper argued the opposite, that in fact some
kinds of ’double counting’ are both permissible and practiced (Steele and Werndl
2013). On closer inspection though, both examples of ’double counting’ addressed in
that paper are simple versions of parameter tuning or model selection with no evalua-
tion beyond the fitting procedure. The authors describe this as ’relative confirmation’
(among models), but in our opinion that is irrelevant to assessments of model predic-
tive skill which is the point that we are concerned with here. Specifically, Steel and
Werndl ignore the fact that results that are predicted “out-of-sample” demonstrate
more useful skill than results that are tuned for (or accommodated).

In some circumstances, the inability of a model to match an observed feature,
despite extensive efforts to tune for it, does imply that the model is deficient and this
can often be useful information limiting inferences to the real world, or providing
targets for model development.

The most important measure of model skill is of course its ability to predict pre-
viously unmeasured (or unnoticed) phenomena or connections in ways that are more
accurate than some simpler heuristic. Many examples exist, from straightforward pre-
dictions (ahead of time) of the likely impact of the Pinatubo eruption (Hansen et al.
1992), the skillful projection of the last three decades of warming (Hansen et al. 1988;
Hargreaves 2010) and correctly predicting the resolution of disagreements between
different sources of observation data e.g., between ocean and land temperature recon-
structions in the last glacial period (Rind and Peteet 1985), or the satellite and surface
temperature records in the 1990s (Mears et al. 2003; Thorne et al. 2011). Against
this must be balanced predictions that did not match subsequent observations—for
instance the underestimate of the rate of Arctic sea ice loss in CMIP3 (Stroeve et al.
2007).

In some cases, research groups using individual models have made surprising pre-
dictions, for example that global warming would not diminish Antarctic sea ice in
the short term (Manabe et al. 1992), or that global-mean surface temperatures would
cool temporarily during the last decade despite continued heat buildup in the sys-
tem (Keenlyside et al. 2008). The first of these surprising predictions has been borne
out, while the second was an over-prediction of what turned out to be a reduction in
the mean surface warming rate rather than a reversal. These were not robust predic-
tions across multiple models and it remains unclear as to whether these predictions
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were based on the ’right’ reasons, so it cannot be claimed that the community at
large foresaw these things, but they show the ability of models to explore unexpected
possibilities.

The use of the models as explanatory tools for observed phenomena (whether
it is the variance of tropical Pacific temperatures, jet stream variability or oscilla-
tions in the ocean circulation, attribution of historical changes) is more common than
explicit prediction, though there are often implicit predictions associated with these
results.

Up until now we have mainly discussed the use and evaluation of single models
and much of the work of specific model groups is devoted to this. However, it is the
emergence of a rich and complex coordinated set of multi-model simulations that
greatly expands the scope for model evaluation and inferences, and we now turn our
attention to this multi-model ensemble.

4 The multi-model ensemble

Over the last two decades, the development of large-scale model intercomparison
projects involving nearly all climate modelling groups has generated an ever more
comprehensive database for model output, which has become the dominant source of
data for scientific uses and model evaluation and assessment. Starting with the Atmo-
spheric Model Intercomparison Project (AMIP) (Gates et al. 1999), the program has
expanded enormously to the current Coupled Model Intercomparison Project, Phase
5 (CMIP5) (Taylor et al. 2012). The scope of the models, the number of simula-
tions per model, the number of requested diagnostics, the sampling frequency (e.g.,
daily) of simulations, and the typical model grid size have all combined to increase
the size of the archive by orders of magnitude. While CMIP3 (initiated in 2004) had
an archive of around 50 Terabytes, CMIP5 is expected to produce 3-10 Petabytes of
distributed data from over 30 specific experiments, using over 60 models, from 29
model groups from 14 countries.

This multi-model ensemble (MME) of opportunity provides an immense resource
for climate model evaluation. There are opportunities to assess the structural uncer-
tainty of model predictions, to identify interesting and potentially informative
patterns of behaviour across models, to tie future projections to past skill in out-of-
sample paleo-climate tests with the same models, and to assess the impact of specific
model characteristics (e.g., scope, grid size) on specific aspects of behaviour and
fidelity. Many hundreds of papers looking at the CMIP5 results have already been
published.

However, the MME was not designed with a particular focus, and consequently the
variations in structure are somewhat haphazard (following the preferences of individ-
ual groups rather than any pre-determined plan) (Knutti et al. 2010). The histogram
of any particular prediction or result from this set of models should therefore not be
interpreted as any kind of probability density function (van Oldenborgh et al. 2013;
Allen et al. 2013), although its breadth offers qualitative guidance if interpreted care-
fully. Curiously, the multi-model mean is often a more skillful predictor on average
across a suite of quantities than is any individual model (Reichler and Kim 2008),



Euro Jnl Phil Sci

though the effect soon saturates (Tebaldi and Knutti 2007). Systematic biases across
all models are clearly present that cannot be removed via averaging (a good example
is the prevalence of the biases in the Inter-tropical convergence zone (ITCZ), where
two bands of equatorial rainfall are often simulated instead of a single one — the
so-called ’double ITCZ’ problem Hwang and Frierson 2013).

A more natural framing in our view for using the MME to make inferences about
the real world or refine predictions is a Bayesian one (Jaynes 2003), where prior
expectations are informally adjusted by model results after accounting for their skill,
scope, or other biases.2 Poorly resolved features in the models for which there is little
demonstrated skill will not shift the posterior probabilities much (if at all), while well-
modelled, skillful elements can affect the final predictions more heavily (Rougier
2007). In practice this is a challenge: what should be used for the prior expectation?
What diagnostics are appropriate to use in any weighting scheme? How can one do
the complex integrations over parameter space formally? (See Frame et al. (2007) for
some discussion of the practicalities).

More generally, in response to these challenges and as outlined by Betz (2013),
the increasingly dominant way to convey this information (for instance in the Fifth
Assessment report from the Intergovernmental Panel on Climate Change (IPCC AR5)
Stocker et al. 2013) has been to supplement key conclusions or predictions with a
confidence statement reflecting the expert judgment of how strong is the evidence
that underlies it (Cubasch et al. 2013). Simulation results, for instance, related to
tropical cyclone intensity changes, are given as numerical indications, but with low
levels of confidence, reflecting the lack of supporting evidence for skill in modelling
changes for this metric in this class of model. In our view, this is effectively an ’infor-
mal’ application of the concepts of Bayesian updating but with no actual calculation
of the likelihoods or posterior probability.3

One helpful development for building confidence is the inclusion of paleo-climate
simulations in the CMIP5 ensemble (Schmidt et al. 2014a). This is the first time that
a coherent set of ’out-of-sample’ simulations have been included in CMIP. The three
targeted time periods—Last Glacial Maximum, mid-Holocene and last millennium—
can safely be described as ’out-of-sample’ because (due to lack of time and/or
interest) we do not believe any models used have been tuned to get better matches
to paleo data, making these truly independent test cases. Furthermore, global and
regional climate changes during the first two of these periods were significantly larger
than those during the modern instrumental period, and some of them are commen-
surate with predicted changes for the rest of the 21st Century. One therefore might
expect skill in reproducing these changes to be at least as relevant to projections than
that for the smaller changes seen in the modern record. This must be set against the
greater uncertainty of paleoclimate states, but the signal-to-noise ratio can be as high
as in modern data (Köhler et al. 2010).

2Alternative framings are discussed in detail in Katzav (2014).
3Katzav (2014) outlines 5 ’views’ of climate model assessement, and this approach is akin to a combination
of his description of the adequacy-for-process and ’conservative’ views.



Euro Jnl Phil Sci

There are at least two classes of inference that can be made via these out-of-sample
tests: verification of robust prediction characteristics (such as the ocean to land tem-
perature change ratio, the connection between the cross equatorial gradient in ocean
temperature and the position of the inter-tropical convergence zone), and discrimina-
tion among non-robust projection characteristics that appear to be related to testable
paleo-climate predictions. Both examples are explored in Schmidt et al. (2014a).

IPCC AR5 presented a preliminary assessment of the CMIP5 simulations, and
future projections from these models (Flato et al. 2013; Collins et al. 2013). While
assessments presented there were typically based on comparing an observation to the
mean of all available models, two novelties in the presentation of the results are worth
noting. First, there was an extensive discussion of how to present the spread among
the simulations; multiple methods were suggested to highlight the different possible
combinations of large/small mean signals and high/low model agreement. Second,
there was a (hesitant) move towards weighting model projections in certain cases.
The most prominent example is in the discussion of Arctic sea ice extent, where a
crude weighting based on having a modern day seasonal cycle ’close’ to observed
was used to exclude outliers (Massonnet et al. 2012). This was justified through the
acknowledged sensitivity of the Arctic system to the base climate state; however, it
does not account for the possible differences in tuning among groups given the known
target. In almost all other projections ’model democracy’ reigns, i.e., each simulation
or ensemble average is weighted equally. This is unlikely to be optimal, but deciding
on an objective basis how to weight models is problematic and is only starting to be
fully explored (Knutti et al. 2010). Assessments currently therefore tend to reflect
that lack of methodological consensus, though this might change in the future.

In general we are more confident in predictions that are more consistent across
models. More precisely, we are more confident that the results are a consequence
of the common underlying assumptions embedded within each model. For those
where there is both consistency among models and observational support from past
changes (e.g., land temperature warming, increases in high latitude precipitation,
Arctic amplification of temperature changes), the result can be viewed with “high
confidence,” and we would also conclude that the processes that determine this result
are encapsulated in our models.

For many important questions however, for example how atmospheric humidity
or cloud cover respond to a given change in global temperature, no past observa-
tional tests are available that could directly confirm model predictions. One important
way for scientists to develop confidence in such situations is to construct a simpler
model for the predicted phenomenon, which shows that it follows from a few well-
known physical principles rather than depending on poorly understood processes.
Indeed, much of the value of complex models in science (as opposed to practical
application) involves their use to test more heuristic models, physical understanding,
or assumptions that have been made in inferring general results from specific obser-
vations; it is these approaches from which genuine scientific confidence emerges
(Held 2005). Indeed much of our understanding of global climate, including the
basics of what controls global temperature, was worked out long before GCMs were
developed.
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In any case “high confidence” is not a guarantee that a conclusion or projection is
correct. The problem of “unknown unknowns” (Rumsfeld 2002) is clearly recognised
since models are incomplete and may share common errors or important omissions
— the polar ozone hole is a classic example of this in the Earth Science field
(Farman et al. 1985). There is therefore a widespread expectation of ’inevitable
surprises’ from very large climate changes should they occur (National Research
Council Committee on Abrupt Climate Change 2002).

At the opposite extreme, when projections from different models disagree sub-
stantially, we infer that the result is either sensitive to one of the many non-robust
model elements or is inherently unpredictable. A suitably designed ensemble of runs
with a single model can distinguish between these reasons: for example, the simu-
lated rainfall trend in a specific continental location over a twenty year period in a
single ensemble member is not predictable even though we have perfect knowledge
of the model that generated it (Deser et al. 2012). Given that the real world is more
complex, we infer that the equivalent real-world phenomenon is not likely to be pre-
dictable either. Regardless of the reason, projections are of limited use in such cases.
In cases where model projection divergence can be explained via differences in scope
or model skill, the level of confidence in a weighted projection that took that into
account might be higher than for the multi-model mean.

Finally, an increasingly important issue is that it is currently impractical to cal-
culate all of the process-based diagnostics that could be envisaged to assess models.
These include multi-variate characterisations of storms, overshooting deep convec-
tion or ocean-ice interactions in the North Atlantic. This effort is precluded by the
very size of the CMIP5 MME dataset and the lack of data analysis infrastructure
that can analyse something this large in flexible ways. Thus while a great deal of
desired information is available in principle, it is in practice inaccessible, and hence
unknown. This is in part a resource allocation issue, with more resources devoted
to gathering observational data and generating model results than bringing the two
together.

5 Practical climate model philosophies

We have discussed how climate models are typically built, evaluated, and used for
prediction, as well as how they can serve as an important tool in developing deeper
scientific understanding. It is clear that climate models are ’messy’. That is, while
they represent a quantification of a complex basic theory combined with neces-
sary engineering ’kludges’ to make the models work (Lenhard and Winsberg 2010),
they also resemble a laboratory apparatus that requires calibration and replication to
produce useful results and deeper understanding.

We began this article referring to a number of philosophical questions related to
the nature of complex simulations, to which we now return. We deal first with the
classical scientific issues of falsifiability and confirmation.

No-one using a climate model should have any illusion that such a model can
be “true” in any pure sense. All climate models are indeed wrong (Box 1979) and



Euro Jnl Phil Sci

yet models can be useful in the sense that their predictions are often demonstrably
more skillful than any simpler alternative. If however we assume that a strict Poppe-
rian would discard a ’falsified’ model, the fact that models will always disagree with
observations if examined closely enough, would leave no valid scientific approach
available, regardless of skill, since all theories of the climate system would be fal-
sified by this standard. A naı̈ve positivism, such as could be attributed to Feynman
(1965):

...we compare the result of the computation to nature, with experiment or expe-
rience, compare it directly with observation, to see if it works. If it disagrees
with experiment, it is wrong.

is thus over-simplistic for the study of very complex systems, which would lead (for
our strict Popperian) to an immediate and permanent dead end. The concept of falsi-
fication can however be rescued by applying it solely to empirical predictions that are
demonstrated to be unskillful (i.e. no better than a naive baseline prediction), rather
than to models as a whole (Lloyd 1987). Similarly it follows that any specific climate
model as a whole cannot be ’confirmed’ (according to a black-and-white definition).
Rather individual empirical predictions can be (within some uncertainty). We stress
that the concept of skill relative to a naı̈ve baseline is a much more useful frame in
which to place model predictions, though this is analogous to confirmation if it is
understood to be a matter of degree (i.e. evidence increasing the trustworthiness of a
prediction).

Next we look at reproducibility, which is widely taken to be a hallmark of any
robust scientific claim. A theoretical prediction should clearly be reproducible at
whatever precision is required, since it should be exactly specified by the theory
assuming it is calculated correctly (which is of course worth confirming by inde-
pendent checks). Reproducibility for an experimental result is of a different kind:
reproduction is not expected to be exact, given differences in apparatus, operators,
environmental conditions etc., but should occur within some estimated level of pre-
cision if the measurements are capturing some underlying process in the real world.
An individual climate model simulation is almost always ’bit-reproducible’ i.e. given
the exact code, compiler, mathematical library and pseudo-random number seed, the
exact same numerical series of results can be reproduced. However, in practice the
simulations provided to the CMIP5 archive cannot be exactly replicated at other
institutions, or even at the same institution after an upgrade of equipment or soft-
ware. Repeat simulations should certainly be consistent, however, with respect to any
important characteristics from which inferences about the real world might be drawn.
Modelling centres typically provide benchmark tests with their models that can be
compared to others to ensure that their simulations are reproducing—in the labora-
tory sense—those obtained by the developers of the model (occasionally this fails
owing, for example, to errors or bugs whose impacts depend on the computing envi-
ronment). The reproducibility of inferences drawn from climate models therefore has
more in common with laboratory experimentation than with the exact repeatability
of a theoretical calculation. On this issue we differ slightly from Frigg and Reiss
(2009) and feel justified in describing simulation as being “in-between” theory and
experimentation (i.e. having characteristics of both).
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We turn now to Humphreys’ claims for the philosophical novelty of simulations
(Humphreys 2009). His claims are based on an overall principle that science with
large simulations “uses methods that push humans away from the epistimological
centre” and cedes some epistemological authority to the simulation (and its emergent
properties) as opposed to the scientists. However, in our view, no result, or emergent
feature, is accepted without human evaluation and assessment which, as we described
above, can encompass may kinds of tests and comparisons. In each of the stages
discussed above—development, evaluation and inference from a single model or
multimodel ensemble— humans are at the center of the epistemological decisions,
in similar ways as they would be in simply observing or experimenting on a natu-
ral complex system. Expert judgments on these results are made based on exisiting
knowledge from observations or more fundamental understanding. Indeed, we argue
that the complex systems created in climate modelling are easier to control and under-
stand (due to the larger range of model manipulations that are possible) than natural
complex systems. Thus the claim that this necessarily leads to a new situation appears
to us to be weak.

However, some of Humphreys’ specific points are of interest. His first claim is
that results from complex simulations are “epistemologically opaque” — specifi-
cally that we don’t immediately know how any (emergent) result arose — unlike for
some more tractable theoretical results. We agree that this is often true for climate
simulations, as discussed above, but there is an analogous opacity in laboratory exper-
iments involving complex systems for which no comprehensive theory exists. For
instance, the Briggs-Rauscher chemical reaction (Briggs and Rauscher 1973) shows
emergent oscillatory behaviour. The initial results (first observed in classroom lab-
oratory demonstration) were epistemologically opaque, but easily reproducible. In
both computational and analogous laboratory cases one can in principle (and some-
times in practice) break down the reasons why any change has occurred by using
simpler (heuristic) models and performing additional tests to increase understanding,
indeed, this is often easier in a computational experiment. In the case of the Briggs-
Rauscher reaction, it took nearly a decade for a comprehensive mechanism for the
emergent oscillations to be deduced (Noyes and Furrow 1982). Thus while epistemo-
logical opacity may be a novel aspect of theory application, it does not seem to us to
be a novel issue within a broader view of scientific epistemology.

His second claim relates to the semantics of theories. Given a general theory
that needs to be applied to a specific situation, realistic simulations requires various
approximations, discretisations, and parameterisations of unresolved processes (as
discussed above). Humphreys notes that implementing these aspects requires atten-
tion to syntax, since some implementations will be more amenable to solution than
others. However, we suggest that any specific climate model (including the relative
approximations) actually functions as an individual theory of climate, leaving dif-
ferences in possible syntax as irrelevant to the predictions of the theory. Differences
in syntax in simulations that exhibit chaos (specifically extreme sensitivity to initial
conditions) will likely produce different specific trajectories through phase space, but
a difference in empirically skillful predictions is unlikely. This is because no predic-
tion unique to any specific trajectory is going to be robust. Rather, robust predictions
require either an ensemble spread or simulations long enough to average sufficiently
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over the chaotic dynamics. As outlined above, the presence of chaos radically affects
how one uses a model, constrains model-observation comparisons, and demands the
use of probabilistic or ensemble-based approaches. This phenomenology is indeed a
novelty, as was recognised 50 years ago (Lorenz 1963), but is again not limited to
complex simulations of the sort we are concerned with here.

Humphreys, Frigg and Reiss make a point to contrast situations where there is
a skillful analytical solution to a problem and where the only solution arises via
simulation. In contrast, we do not see this as fundamental. It is easy to envisage
a multi-variate, multi-dimensional analytical solution that is so complex that it is
impossible to fully visualize or understand without computational help, just as it is
easy to find examples of simulated solutions to ’intractable’ problems that exhibit
very simple emergent behaviour. The advantages to an analytic solution decrease
rapidly with increasing complexity.

More generally, it is worth noting that only highly idealised applications of the-
ories of the real world admit analytic solutions. The pendulum examples used by
Humphreys are clear idealisations of the real world. For any real pendulum (single,
double or a multiple upside-down oscillating one), the addition of factors such as fric-
tion, air resistance, finite size, and turbulent air flow will impact their trajectory and,
if included, will make their solution intractable and only accessible via simulation.
Therefore focusing on the difference between tractable and intractable idealisations
seems orthogonal to the issue of how one should confront general theories with real
world data.

The time-dependence of dynamic solutions is the third issue highlighted by
Humphreys. He, along with Parker (2013a), sees this as an essential component
of complex simulation. However, while current large-scale climate models (with-
out exception) use time-stepping to explore the sensitivities of the modelled climate
system, it is conceivable that at some point (as with slightly simpler systems
(Broer et al. 2002)), it may be possible to define the climate attractor(s) and their sen-
sitivity to forcings directly without recourse to a time-stepped solution while using
the same model code. For instance, both Sherwood (1999) and Schmidt and Mysak
(1996) used Newton-Rapheson methods to identify equilibria in reduced complex-
ity climate models that could optionally be run also in time-stepping mode. Time in
such analyses is implicit, rather than explicit, but the issues raised above would all
still hold.

Humphreys’ final point revolves around the idea that it is no longer possible, when
discussing complex simulations, to separate theoretical and practical limitations. For
climate models, for instance, one cannot assume that time steps or spatial grid sizes
can become as small as desired because of the impractically rapid increases in com-
putation time as scales become smaller. Instead these limitations are an inherent part
of the whole exercise: they account for why a climate model has the form it does (by
defining the scale at which physics gets truncated and parameterisations are neces-
sary). We agree that this is a key observation, but practical considerations also limit
experimental science: measurements either in the laboratory or in the field cannot
be made with infinite precision, and often must measure something other than what
would be ideal (for example we detect planets around other stars not by observing
them directly, which would be far more challenging, but by observing their impact
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on larger bodies). So again, while this is may be novel in terms of theory application,
a broader view indicates that similar concerns have always existed in experimental
science.

To conclude, while we do think that the rise of complex simulation in climate
and other fields has important practical consequences, we are not convinced that it
requires any wholesale adjustment to philosophical understandings of the scientific
method. Rather, as should be clear from the previous sections, while the practice of
climate model development and use is different from many other fields in science, it
acts to help clarify previous ideas, rather than undermine them. We agree with many
previous authors that experimentation with climate models resembles laboratory sci-
ence more than calculations using known theories, and in that sense transcends a
binary theory/experiment divide. But we find that the limitations in using climate
models to describe and predict the real world simply make more obvious the equiv-
alent limitations that any models of any real world systems have. Thus they mainly
serve to illuminate classic problems of scientific epistemology —across theory and
experimentation—rather than create new ones.

As with all tools, there can be both appropriate and inappropriate applications
of climate models. Generating predictions without taking into account uncertainties
associated with different models, parameterisations, or initial conditions, is not par-
ticularly useful and cannot be used to assess skill. Relatively arbitrary weighting
strategies that are missing a demonstration of relevance to any specific outcome are
commonplace, as are mistaken interpretations of the MME histogram as a probability
distribution. But just as an attempt to use a hammer to fix a watch does not invali-
date the use of the same hammer to drive home a nail, the best practices in climate
modelling are not invalidated by the least useful.

Overall, the paradigm of understanding emergent properties of the complex system
via the bottom-up agglomeration and interaction of small scale processes has become
dominant in climate science. While it is conceivable that a top-down principle could
be found that provides better predictions and thus supplants climate modelling, no
such principle has yet been discovered and we think it unlikely that one will emerge.
Meanwhile, climate models continue to increase in skill and scope (Knutti et al. 2013)
and the challenge to intelligently marshall that resource in the most effective and
rigorous way possible to better understand the world continues to grow.
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