Amplified climate change signal due to urban expansion at local scales from a RCM

Daniel Argüeso1,2, J.P. Evans1,2, L. Fita2,3, A.J. Pitman1,2 and A. Di Luca2

1ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia
2Climate Change Research Centre, University of New South Wales, Sydney, Australia
3Laboratoire de Météorologie Dynamique, UPMC-Jussieu, CNRS, Paris, France

3rd Lund Regional-scale Climate Modelling Workshop
Lund, Sweden, 16-19 June 2014
Motivation

FACTORS

- Anthropogenic climate change
- Climate in cities is distinct
- Urban population growth (urbanization)

QUESTIONS

- How will CC manifest in cities?
- What will be the combined effect of CC and urban expansion?
Future climate at urban scales

- **GCM (150-200km)**
 - **No cities at all**
 - **GCM** is the primary source of Climate Change information.
 - **But too coarse to represent cities**

- **RCM (10km)**
 - **Only urban land use**
 - **RCMs at 10k capture some features of the city, but urban areas are represented only as different landuse**
 - **Need for explicit representation of cities!**

Climate Change Research Centre
Future climate at urban scales

GCM (150-200km) - No cities at all
RCM (10km) - Only urban land use
RCM (2km) - Urban canopy model

Sydney
Experiment design

- Weather Research and Forecasting (WRF) system
- 2-km spatial resolution (nested in 10k and 50k)
 - CSIRO-MK3.5
- No cumulus parameterization in inner domain (explicit)
- Using Urban Canopy Model (SLUCM)\(^1\)

Source: Chen et al. (2011)

(1) Kusaka et al. (2001) Boundary-Layer Meteorology
Experiment design

- Three 20-y simulations:
 - 1990-2009: Present climate, present LU (CO)
 - 2040-2059: Future climate, present LU (CC)
 - 2040-2059: Future climate, future LU (CC_LU)
- Climate change (A2) + Urban expansion (red)
Present climatology daily Tmax and Tmin

Argüeso et al. (2014) Climate Dynamics
Changes in daily \(\text{Tmax} \) and \(\text{Tmin} \)

CC only
- \(\text{Tmax} \) changes: \(\sim 1.0 \) to \(1.5^\circ \text{C} \)
- \(\text{Tmin} \) changes: \(\sim 1.5 \) to over \(2.0^\circ \text{C} \)

CC and LU change
- \(\text{Tmax} \) changes: similar to CC only
- \(\text{Tmin} \) changes: \(\sim 3.0 \) to over \(4.0^\circ \text{C} \) (LU change)
- Almost no footprint of urban expansion in \(\text{Tmax} \)
- Clear impact of urban expansion on \(\text{Tmin} \)
Changes in temperature diurnal cycle

Summer

Winter
Seasonal changes in daily Tmax and Tmin
Changes in daily Vapor Pressure

- Overall increase in VP due to global warming
- Substantially smaller in areas of urban expansion
Changes in daily heat stress

- Heat stress: simplified wet-bulb globe temperature
- \(W = 0.567T + 0.393e^{3.94} \)

Change in daily heat stress

<table>
<thead>
<tr>
<th></th>
<th>Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>![Day CC map]</td>
<td>![Night CC map]</td>
</tr>
<tr>
<td>CC + LU</td>
<td>![Day CC+LU map]</td>
<td>![Night CC+LU map]</td>
</tr>
</tbody>
</table>

Index:*

1. 1
2. 1.2
3. 1.4
4. 1.6
5. 1.8
6. 2
7. 2.2
8. 2.4
9. 2.6
10. 2.8
11. 3

Difference

Climate Change Research Centre
Exceedance of risk W thresholds
Conclusions

- Urban expansion + Climate change using RCMs:
 - City growth effect on local T_{min} ~ climate change signal (A2)
 - No perceptible impact on T_{max} changes
 - Reduced diurnal cycle
 - Larger effect during winter and spring
- Smaller increases in **humidity** (vapor pressure)
 - Particularly during the day
- Implications for **heat stress**: compensating factors
 - Day: cities reduce CC-induced heat-stress increase (humidity driven)
 - Night: cities enhance CC-induced heat-stress increase (temp. driven)